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Abstract. Recently, CNN-based methods lead tremendous progress in
segmenting abdominal organs (e.g., kidney, liver, and pancreas) and
anomaly tumors in CT scans. Although 3D CNN-based methods can
significantly improve accuracy by using 3D volume as input, they need
more computational cost and may not satisfy the efficiency requirement
for many practical applications. In this study, we mainly aim at improv-
ing the 2D segmentation by leveraging the consistency- and- discrepancy-
context information from adjacent slices. Specifically, the consistency
context mainly considers that the prediction variance of two adjacent
slices needs to follow the variance in the ground truth. The discrepancy-
context assumes the label difference of adjacent slices usually occurs in
the edge area of organs. To fully utilize the above context information,
we further devise a two-stage 2.5D segmentation framework based on
the U-Net that takes three adjacent slices as input. In the first stage,
we encourage the predictions of the three slices following the consistency
context. In the second stage, we refine the segmentation result by adopt-
ing the prediction discrepancy area of adjacent slices as an extra input.
Experimental results on several challenging datasets demonstrate the ef-
fectiveness of our proposed methods. Moreover, the adjacent-slice context
information considered in this study can be effortlessly incorporated into
other segmentation frameworks without extra testing overhead.

Keywords: Organ segmentation · Consistency context · Discrepancy
context.

1 Introduction

Segmenting abdominal organs (e.g., kidney, liver, and pancreas) and anomaly
tumors in CT scans is a critical prerequisite for many clinical scenarios, including
computer-aided diagnosis, radiotherapy planning, and computer-assisted surgery
overtreatment [11,15,20,8,22,12,17]. Apart from artifact and low contrast in the
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original CT scan, this segmentation task still needs to deal with challenges from
different aspects, such as complex contextual associations, class imbalance, and
intricate tissue shapes/sizes. Due to these challenges, a vanilla U-Net [16] model
usually suffers the issue of discontinuous prediction, missing the small target, as
shown in Fig. 1.

The development of CNN-based methods has significantly boosted the perfor-
mance of this task. Existing CNN-based methods can be categorized as 2D-based
[4,19,23] and 3D-based [10,6,5]. The 2D-based methods are more efficient since
they process each slice independently while not utilizing the context informa-
tion from the adjacent slice, resulting in relatively low performance. On the other
hand, the 3D-based approaches are more accurate by using 3D volume as input.
Meanwhile, they need more computational cost and may not satisfy the efficiency
requirements for many practical applications. Therefore, it raises a question: Is
it possible to utilize the contextual information for improving segmentation per-
formance while still maintaining the efficiency as in 2D-based models? The work
in [7] has tried to tackle this problem by training the segmentation model in a
2.5D manner, in which several adjacent slices are used as input. However, [7]
simply uses more input slices and fails to exploit the inter-slice knowledge.

In Fig. 1, we illustrate the predictions from a vanilla U-Net. Moreover, we
also compute the mis-segmented regions and the inter-slice difference (inter-diff)
regions of the ground truth. Notice that, the inter-diff in the ground truth of
two adjacent slices (formulated in Eq. 1) is roughly located in the boundary
regions of the target tissues. By observing the mis-segmented regions, we can
find that a large variance occurs between the predictions of adjacent slices, but
the inter-diff of two adjacent slices are very similar. Besides, there are also some
errors that happen around the boundary of tissues. Therefore, we could improve
the segmentation accuracy by reducing the prediction variance in adjacent slices
and leveraging the information of inter-diff regions.

In this paper, for accurate segmentation of abdominal organs in CT scans, we
propose to leverage the inter-diff information from two aspects: (1) Consistency-
context mainly considers that the prediction variance of two adjacent slices
needs to follow the variance in the ground truth (GT). (2) Discrepancy-context
assumes the label difference of adjacent slices usually occurs in the organ’s
boundary area with more segment difficulty. To fully utilize the context infor-
mation, we further devise a two-stage 2.5D segmentation framework that takes
three adjacent slices as input. In the first stage, we encourage the predictions of
the three slices to follow the consistency-context by leveraging it as an additional
supervision signal. In the second stage, we further refine the segmentation results
by adopting the prediction discrepancy area of adjacent slices as an extra input.
In this way, our model can better capture the inter-slice context information of
the CT scans, especially the organ/tumor edge regions with more segment diffi-
culty, thus improving segmentation accuracy and maintaining the high efficiency.
Besides, the proposed context information can be easily incorporated into other
promising segmentation models (e.g., DeepLabv3 [3], PSPNet [24]). Experiments
on three different organ datasets demonstrate our model’s: (a) Effectiveness of
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Fig. 1. Schematic diagram of the results of adjacent slices predicted by U-Net model.
Mis-seg : Regions of inconsistency between predictions and GTs. Inter-diff : The inter-
slice differences between adjacent GT slices. The inter-diff regions have a high degree
of overlapping with the mis-seg regions, which are basically located in tissues’ edge
regions. These regions are difficult for segmentation models and can act as critical
information for model learning. (Best viewed in color)

different components. (b) Generalization ability on different organ datasets. (c)
Portability to different segmentation models.

2 Methodology

For robust segmentation of organ and anomaly tumor in 3D CT scan, our model
adopts a two-stage 2.5D framework, which benefits from inter-slice difference
(inter-diff) knowledge from two aspects: (1) Consistency context similarity be-
tween the predictions and GTs (Sec. 2.1), and (2) Discrepancy context (Sec. 2.2).
The overall pipeline of our model is illustrated in Fig. 2.

Firstly, we will introduce the inter-diff, consistency context, and discrepancy
context used in our model. We denote a 3D organ volume, the corresponding
one-hot prediction and GT as X ∈ RN×H×W , Yseg ∈ RN×C×H×W , YGT ∈
RN×C×H×W , where N is the number of slices, C is the number of categories, H
and W are height and width of each slice, respectively.

Inter-diff: The inter-diff in prediction for a slice t is the prediction difference
between itself and the adjacent slice. In the same manner, we can get the inter-
diff of the GT.

Rt
seg = Yt

seg −Yt−1
seg , Rt

GT = Yt
GT −Yt−1

GT . (1)

Consistency context. We assume that the prediction’s inter-diff of adjacent
slices needs to follow the one in GT, and this knowledge act as an additional
supervision signal in our model. This context constraint can be measured by the
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Fig. 2. The framework of our model, which adopts a 2.5D two-stage architecture.
Abbreviations: SV = supervision, ATT = attention. Best viewed in color.

L1 distance between the L2-norm of Rt
seg and Rt

GT, which goes as:

Dt =
∣∣∣||Rt

seg||2 − ||Rt
GT ||2

∣∣∣. (2)

Discrepancy context. Our model leverages the fact that inter-diff usually oc-
curs in tissues’ edge regions which are hard to segment. We denote such knowl-
edge as discrepancy context, and utilize it as the attention guidance for refine-
ment.

2.1 Consistency context-based organ segmentation

As illustrated in Fig. 2, in the coarse segmentation stage, our model takes the
target slice (xt) and its adjacent slices (xt−1 & xt+1) as input, and output the
predicted segmentation masks of the three slices. For each slice, we calculate
DiceCE loss (LDCE) to measure the prediction accuracy, which goes as:

LDCE = LDice + LCE . (3)

Specifically, LDice = −
∑n

i=1(1− 2 · ti pi

ti+pi
) and LCE = −

∑n
i=1 ti log (pi), where

ti is the GT label, and pi is the predicted probability for the ith class.
Apart from the DiceCE loss for the three input slices, we further use a Con-

textual Residual loss (LCR) to encourage the consistency context of the (xt−1,
xt) and (xt, xt+1) to be minimum. The Contextual Residual loss (LCR) goes as:

LCR = Dt +Dt+1 (4)

Finally, the overall loss function for the first coarse stage is

Lcoarse = LDCE(xt−1) + LDCE(xt) + LDCE(xt+1) + λCRLCR, (5)

where λCR is a hyper-parameter and is set to 0.05 in this study.
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2.2 Segmentation refinement with discrepancy context knowledge

After the coarse stage, we further propose to utilize the discrepancy context to
further rectify the segmentation results. As shown in Fig. 1, the edge regions
of organ & tumor are with higher difficulty, and the inter-diff mask (Mt) is
with a high degree of overlap with the edge regions. Therefore, we leverage the
discrepancy context as extra attention guidance. The discrepancy context used
in this stage is formulated as the prediction difference regions in the adjacent
slices from the coarse stage’s outputs, which goes as:

M t = 1(Lt
seg ! = Lt−1

seg ) + 1(Lt
seg ! = Lt+1

seg ) (6)

where Lt−1
seg , Lt

seg and Lt−1
seg are the predicted labels.

Then, we leverage M t as the attention information for refining the result
Lt
seg of the slice Xt. In this study, we directly concatenate the Xt with M t and

the coarse segmentation result Y t
seg as an augment input for a 2D U-Net model,

and compute the refined segmentation results. In this stage, we train the model
by the DiceCE loss.

3 Datasets and Implementation Details

Datasets. We conduct the experiments to evaluate the performance of our
method on three different organ CT datasets: KiTS (DK , for kidney)[9], LiTS
(DL, for liver)[1], and Pancreas (DP )[18]. The statistical details of the datasets
are summarized in Table 1.

Table 1. The statistics of datasets adopted in our study.

Datasets
Labeled
Organs

#Volumes
training testing total

KiTS (DK) Kidney 168 42 210
LiTS (DL) Liver 104 26 130
Panc (DP ) Pancreas 225 57 282

Implementation Details. We implement our model with the PyTorch li-
brary [14] in a device with an NVIDIA 2080TI GPU. The image intensity is
windowed by [-160, 240] for DK , [-100, 400] for DL and [-100, 240] for DP . Each
slice is resized to 512×512 and then randomly cropped to 256×256 for training.
We adopt random flip for data augmentation. For the U-Net model, we adopt the
ResNeXT50 32x4d [21] as the encoder’s backbone, which could be replaced by
other segmentation backbones such as VGG-16 and ResNet-50. For both stages,
we set the number of training epochs and batch-size to 12 and 8, respectively.
The Adam [13] is used for optimization with an initial learning rate of 1e-4.
Evaluation metrics: We adopt Dice-Sørensen Coefficient (DSC) as the eval-

uation metrics, which goes as DSC(P,G) = 2×|P∩G|
|P|+|G| , where P is the binary

prediction and G is the ground-truth.
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Table 2. The segmentation accuracy of our model and the baseline models on three
organ segmentation datasets (in DSC (%)). Kid., Liv., and Panc. are short for kidney,
liver, and pancreas, respectively.

Model
DK DL DP

mean Kid. tumor mean Liv. tumor mean Panc. tumor

2D U-Net 78.64 94.90 62.37 72.38 94.39 50.37 58.86 76.27 41.45
2.5D U-Net-1 78.71 94.47 62.95 74.64 95.07 54.21 59.54 76.56 42.51
2.5D U-Net-3 79.46 95.06 63.85 75.29 95.07 55.50 59.76 76.72 42.80

Ours(coarse stage) 81.06 95.26 66.86 75.80 95.44 56.16 60.05 77.03 43.07
Ours(fine stage) 81.78 96.57 66.98 79.63 95.62 63.63 60.49 77.45 43.53

4 Experimental results and analysis

4.1 The effectiveness of our proposed method

We first evaluate the effectiveness of the proposed model by comparing it with
three baseline models. Specifically, we choose U-Net in vanilla version and two
2.5D variants as baselines. (1) 2D U-Net is a vanilla 2D U-Net that only uses
one slice as input. (2) 2.5D U-Net-1 is a 2.5D U-Net that takes three adjacent
slices as input, while only predict the segmentation result of the middle slice for
training and testing. (3) 2.5D U-Net-3 takes three adjacent slices as input, while
computing the segmentation results for all three slices for training and testing.
The DSC results on three different organ datasets (DK , DL, DP ) are reported
in Table 2. From the table, we can make the following two conclusions.

(1) More input slices and labels are beneficial for the accuracy.
In Table 2, we observe that 2.5D-based model can consistently improve the
performance on three datasets. For example, the mean DSC on DL is improved
from 72.38% to 74.64% when switching the model from 2D U-Net to 2.5D U-
Net-1. Besides, with the supervision of more adjacent slices, the 2.5D U-Net-3
can further increase the mean DSC from 74.64% to 75.29% compared with 2.5D
U-Net-1. These results demonstrate that the 2.5D architecture with more input
slices and labels can jointly improve the segmentation performance.

(2) The consistency- and discrepancy- knowledge are effective for
the segmentation. From the last two rows in Table 2, we can find that our
model outperforms the above baseline models consistently in both coarse stage
and fine stage. For example, with consistency context, the result in the coarse
stage outperforms the best baseline model (2.5D U-Net-3) by 3.13% and 2.32% in
the tumor DSC and mean DSC on DK , respectively. In addition, the discrepancy
context leveraged in the fine stage further boosts the accuracy by 0.72%, 3.83%,
and 0.44% in mean DSC of DK , DL, DP , respectively. Note that the tumor
DSC on DL witnesses a remarkable gain from 56.16% to 63.63%. These results
verify that incorporating consistency- and discrepancy- knowledge can improve
model’s segmentation performance, especially for relatively smaller targets like
tumors.
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4.2 Portability with different segmentation models

In this section, we evaluate the portability of our proposed context informa-
tion with several different promising models, including U-Net [16], PSPNet [24],
DeepLabv3 [2]. Notice that all the comparing models are implemented in the
same 2.5D two-stage training manner. In Table 3, we report the accuracy with-
out and after using the proposed context, and can have following observations.

(1) Both contexts can increase the accuracy of different models. As
shown in the left part of Table 3, our model can bring consistent performance
gains for the coarse stage of all the three segmentation models (1.61/12.87/2.57
points gains in mean DSC by using U-Net, PSPNet, DeepLabV3, respectively).
In the right part of the table, we can observe similar results for all the three
models at the fine stage (2.00/11.75/2.68 points gains in mean DSC over U-
Net, PSPNet, DeepLabV3, respectively). These experiments demonstrate the
portability of the proposed consistency- and discrepancy-context that can be
effortlessly incorporated into different models.

(2) The context information has a more positive impact on small
targets. In Table 3, we can find that tumor DSCs achieve relatively more im-
provement, e.g., 64.84% to 68.74% for DeepLabv3’s coarse stage and 64.90%
to 69.31% for DeepLabv3’s fine stage. These results suggest that our proposed
method has a more positive impact on smaller targets, which can be critical for
clinical scenarios since accurate recognition of the small tumor is essential.

Table 3. Experimental results (in DSC) of different segmentation models without and
after using the proposed context on the KiTS dataset.

Method
Coarse stage Fine stage

mean(%) kidney(%) tumor(%) mean(%) kidney(%) tumor(%)

U-Net [16] 79.46 95.06 63.85 79.78 95.06 64.50
U-Net+ours 81.06 95.26 66.86 81.78 96.57 66.98

PSPNet [24] 52.69 72.78 32.59 54.30 72.55 36.04
PSPNet+ours 65.55 86.48 44.62 66.04 87.12 44.96

DeepLabv3 [2] 79.00 93.16 64.84 79.37 93.84 64.90
DeepLabv3+ours 81.57 94.39 68.74 82.05 94.78 69.31

4.3 Qualitative results

Fig. 3 depicts the qualitative results of our model against baselines on examples
from DK . Although the original adjacent slices are similar, the baseline models
give inconsistent predictions, especially for false tumor regions. The 2D UNet is
prone to over-segment the tumor regions (a3, b3) and missing kidney regions (d3,
e3, f3). The 2.5 D U-Net-1 has better prediction in (a4, b4), but over-segment
tumor in (c4), and can not recognize tumors in (d4, e4, f4). The 2.5 D U-Net-3
could alleviate the over-segmentation in (a5, b5, c5), but errors still exist. In
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Fig. 3. The qualitative segmentation results of two representative adjacent slices. Blue
and Green colors show the predictions of organs and tumors. P=previous, C=current,
N=Next. Best viewed in color.

addition, 2.5D U-Net-3 locate tumor regions of (d, e, f) better, but all have
false-positive regions of kidney. In (b6), our coarse model also suffers the same
issue but is corrected by our fine model (b7). Comparing the above results with
(d6, e6, f6) and (d7, e7, f7), our coarse model can also help locate the tumor
regions and eliminate the false positive region of kidney. Besides, our fine model
further recovers the missing tumor areas ((d6) to (d7), (e6) to (e7)).

5 Conclusion

In this study, we aim to boost the 2D segmentation model’s accuracy by lever-
aging the inter-slice context information while maintaining the efficiency of 2D
models. Specifically, our model adopts a 2.5D coarse-to-fine architecture, which
benefits from the inter-slice context knowledge from two aspects: (1) Consistency
context similarity between the predictions and GTs for additional supervision,
and (2) Discrepancy context for attention guidance. The experiments demon-
strate that our method achieves considerable improvement in different datasets
and can be incorporated into other promising segmentation models. For future
work, we will further investigate the incorporation of a more extensive range
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of contextual information and the organ’s anatomical priors to further improve
accuracy.
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