
2444 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 22, NO. 9, SEPTEMBER 2020

Leveraging Virtual and Real Person for Unsupervised
Person Re-Identification
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Abstract—Person re-identification (re-ID) is a challenging
instance retrieval problem, especially when identity annotations
are not available for training. Although modern deep re-ID
approaches have achieved great improvement, it is still difficult
to optimize the deep re-ID model and learn discriminative person
representation without annotations in training data. To address
this challenge, this study considers the problem of unsupervised
person re-ID and introduces a novel approach to solve this
problem by leveraging virtual and real data. Our approach includes
two components: virtual person generation and training of the
deep re-ID model. For virtual person generation, we learn a
person generation model and a camera style transfer model using
unlabeled real data to generate virtual persons with different
poses and camera styles. The virtual data is formed as labeled
training data, enabling subsequent training deep re-ID model in
supervision. For training of the deep re-ID model, we divide it
into three steps: 1) pre-training a coarse re-ID model by using
virtual data; 2) collaborative filtering based positive pair mining
from the real data; and 3) fine-tuning of the coarse re-ID model
by leveraging the mined positive pairs and virtual data. The final
re-ID model is achieved by iterating between step 2 and step 3 until
convergence. Extensive experiments demonstrate the effectiveness
of our method. Experimental results on two large-scale datasets,
Market-1501 and DukeMTMC-reID, show the advantages of our
method over state-of-the-art approaches in unsupervised person
re-ID. Our code is now available online.1

Index Terms—Person re-identification, generative adversarial
network, collaborative filtering.

I. INTRODUCTION

W ITH the urgent demand for security and the rapid de-
velopment of multimedia, surveillance camera systems

have been deployed in a large number of public areas, such as
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airports, streets, malls, et al. This allows us to obtain massive
image/video data for tracking [1] and retrieving [2] person of
interest in a large-scale database, such as escaped criminals and
missing children. Person re-identification (re-ID) is developed to
find the same person from a gallery collected by different cam-
eras. It is a challenging and attracting topic for computer vision
and multimedia due to the significant image variations caused
by changing of human poses and camera settings. During the
past few years, person re-ID has achieved significant improve-
ment [3]–[7], benefiting from the remarkable success of deep
Convolutional Neural Nets (CNNs) [8]. Nevertheless, training
deep re-ID model requires substantial annotated data, which is
quite expenespecially when across a mass of cameras. Under
such circumstances, there is an urgent demand for learning the
discriminative deep re-ID model with large-scale unlabeled data.
In this paper, we address the challenging unsupervised person
re-ID problem, where large-scale training data is provided while
no label information is available.

Unsupervised person re-ID has been studied in many previous
works [9]–[11]. These works mainly focus on designing discrim-
inative hand-crafted features and dealing with a small dataset but
degenerate when applying on large-scale datasets. Deep CNNs
have reached state-of-the-art performance on large-scale person
re-ID datasets. Most of the existing deep CNNs based re-ID mod-
els were trained by using either ID-discriminative embedding
(IDE) [5] or triplet (or pairwise) loss [6]. However, it is impos-
sible to train these models without annotations on the training
set, because both IDE and triplet loss require label information
or the relationship (positive and negative) with other training
data for the given image. There are limited works that make ef-
forts on deep learning based unsupervised re-ID. Fan et al. [12]
propose a framework called PUL, which progressively utilizes
k-means clustering to find reliable positive pairs and fine-tunes
the deep CNN model. The main drawbacks of PUL are that
the initial re-ID model should be pre-trained on a labeled re-ID
dataset and the rough number of unique identities in the target
dataset should be given for clustering.

In this study, we consider the pure unsupervised setting
of person re-ID, where no auxiliary labeled dataset is pro-
vided. We propose a novel deep CNN based approach, which
consists of two components: 1) virtual person generation and
2) training of the deep re-ID model. For virtual person genera-
tion, we first employ DPG-GAN [13] and Star-GAN [14] to learn
a person generation model and a camera style transfer model
by using unlabeled real training data. As such, we can gener-
ate virtual persons with different poses and assign them with
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Fig. 1. The overall training procedures of the proposed unsupervised deep re-ID method contains three main steps. In step 1, we use virtual data generated by
DPG-GAN and Star-GAN to train a coarse deep re-ID model. Then, a collaborative filtering based positive pair mining approach is utilized to find reliable positive
pairs from the real data in step 2. In step 3, we refine the coarse re-ID model by leveraging the virtual data and mined positive pairs with a multi-task loss function.
Finally, we alternate between step 2 and step 3 until the re-ID model converged.

corresponding pseudo labels. Then the same generated identity
will be style transferred to different cameras. These virtual per-
sons are formed as virtual training data and subsequently be
utilized for training a coarse deep re-ID model in a supervised
way.

Deep re-ID model training can be divided into three steps as
shown in Fig. 1: 1) pre-training on virtual data, 2) positive pair
mining, and 3) model fine-tuning.

For step 1, a coarse deep re-ID model is trained by using
the generated virtual data. This coarse model can provide dis-
criminative representation for similarity measuring of persons.
However, the image quality of virtual data is lower than real data.
Thus, the discriminative ability of the model trained on virtual
data will be inferior to that trained on labeled real data. To ad-
dress this problem, we further propose to mine reliable positive
pairs from real data and jointly optimize the re-ID model with
virtual and real images.

For step 2, we first use the previous pre-trained coarse re-ID
model to extract features for each real image and compute its
k-reciprocal nearest neighbors (k-RNNs) [15]. Although each
image and one of its k-RNNs can be treated as a positive pair,
there are large amount of false positive pairs which have negative
effects for model refinement. To alleviate this issue, we leverage
the relations of shared neighbors between samples and propose a
novel collaborative filtering based positive pair mining approach
to find the most reliable positive pairs in unlabeled data.

In step 3, the mined positive pairs and the virtual labeled
training data are simultaneously leveraged for model refinement
by using a multi-task loss function. At last, the final deep re-ID
model is achieved by iterating between step 2 and step 3 until
convergence.

To summarize, main contributions of this study are as follows:
� We propose a novel framework for unsupervised person

re-ID by leveraging the generated pseudo labeled virtual

data and the unlabeled real data for deep re-ID model train-
ing. Experiment shows the benefit of jointly training with
the virtual and real data in unsupervised re-ID system.

� A collaborative filtering based positive pair mining ap-
proach is introduced to select reliable training pairs from
unlabeled real data by leveraging person-to-person simi-
larity relations. Experiment demonstrates the effectiveness
of the proposed positive pair mining approach for model
refinement.

� The proposed method achieves state-of-the-art perfor-
mance in unsupervised person re-ID on two large-scale
datasets, Market-1501 and DukeMTMC-reID.

II. RELATED WORK

Unsupervised Person Re-identification: Unsupervised person
re-ID attempts to learn discriminate features for pedestrians with
unlabeled data. Hand-craft features can be directly employed
for unsupervised person re-ID. Farenzena et al. [16] propose
to use the weighted color histogram, maximally stable color
regions, and recurrent high structured patches to separate the
foreground of pedestrians from the background and compute
appearance-based feature for re-ID. Gray and Tao [17] split in-
put image into horizontal stripes and use eight color channels
and 21 texture filters on the luminance channel to extract fea-
ture. Recently, Zhao et al. [18]–[20] propose to split images
of pedestrians into 10 × 10 patches and combine LAB color
histogram and SIFT feature as the final descriptor. Liao et al.
[9] introduce local maximal occurrence descriptor (LOMO) by
combining color feature and SILTP histogram. Zheng et al. [11]
propose to extract global visual features by aggregating local
color-name descriptors, and a bag-of-words model is then uti-
lized for re-ID. Yang et al. [10] propose a weighted linear coding
method for multi-level descriptor learning. These methods can
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be readily applied to unsupervised person re-ID but often fail to
perform well on large-scale datasets.

Yu et al. [21] present an unsupervised metric learning ap-
proach for re-ID called CAMEL. It employs asymmetric metric
learning to find the shared space where the data representations
are less affected by view-specific bias. Liu et al. [22] propose a
step-wise metric promotion model for unsupervised video per-
son re-ID by iteratively estimating the annotations of training
tracklets and optimizing the re-ID model.

Recently, many works [12], [23]–[25] try to transfer a pre-
trained re-ID model to the unlabeled dataset (also called do-
main adaptation). Peng et al. [23] exploit a multi-task dictionary
learning method to learn shared feature space between labeled
dataset and unlabeled dataset. To take advantage of the strong
discriminate ability of deep learning, Fan et al. [12] present
a deep learning framework called PUL. They use a labeled
dataset to initialize feature embedding and then fine-tune the
network with positive sample pairs obtained through k-means
clustering on the unlabeled dataset. TJ-AIDL [24] adopts a
multi-branch network to establish an identity-discriminative and
attribute-sensitive feature representation space most optimal for
the target domain without any label information. Deng et al.
[25] introduce SP-GAN by jointly preserving self-similarity and
domain-dissimilarity in the process of image-to-image transla-
tion. The source set is transferred to the style of the target set and
is then used to learn a re-ID model for the target set. Similarity,
Wei et al. [26] present PT-GAN to reduce the domain gap by
translating the given image to the style of the target dataset and
train deep re-ID model in a supervised way. All the methods
mentioned above require a labeled re-ID dataset to pre-train a
re-ID model and then transfer it to the unlabeled target set. In
this paper, we conduct unsupervised person re-ID under a more
strict condition where there are only unlabeled target set.

Person Image Generation: Generating realistic person images
is a challenging task because of the complexity of foreground,
person pose, and background. The image generation models,
e.g., VAE [27] and GANs [28], have been demonstrated the ef-
fectiveness in person generation. Zhao et al. [29] combine vari-
ational inference into GAN to generate multi-view images of
persons in a coarse-to-fine manner. Ma et al. [30] develop a
framework to generate new person images in arbitrary poses
given as input person images and a target pose. Despite the
promising results, these two approaches require aligned person
image pairs in the training stage. To solve this problem, Esser
et al. [31] propose VAE-U-Net to train a person generation model
by disentangling the shape and appearance of the input image.
The new image is generated with U-Net for target shape, condi-
tioned on the VAE output for appearance. Ma et al. [13] introduce
DPG-GAN to generate virtual person images by simultaneously
disentangling and encoding the foreground, background, and
pose information into embedding features. The embedding fea-
tures are then combined to reconstruct the input person image.

Style Transfer: Style transfer is a sub-domain of image-
to-image translation. Recent works conducted on GANs [28]
have achieved impressive results on image-to-image translation.
Pix2pix achieves this goal by optimizing both adversarial and
L1 loss of cGAN [32]. However, paired-samples are required in

the training process, and this limits the application of pix2pix
in practice. To alleviate this problem, Cycle-GAN [33] intro-
duces cycle-consistent loss to preserve key attributes for both
the source domain and the target domain. These two models can
only transfer images from one domain to another and may not be
flexible enough when dealing with multi-domain translation. To
overcome this problem, Star-GAN [14] is proposed to combine
classification loss and adversarial loss into the training process
to translate an image into different styles with only one model.

III. THE PROPOSED METHOD

In this section, we first describe the pipeline of virtual per-
son generation in Section III-A. Then, the implementation of
coarse Deep Re-ID model training is introduced in Section III-B.
We present the details of collaborative filtering based positive
pair mining in Section III-C and the final model fine-tuning in
Section III-D.

A. Virtual Person Generation

In unsupervised person re-ID, identity annotations are not
available in training set, which makes it challenging to train deep
re-ID model in traditional way like IDE [5] and triplet loss [6].
In order to solve this problem, this paper considers learning the
potential distribution of the unlabeled person data and generat-
ing labeled virtual person images for deep re-ID model training.
For achieving this goal, this work employs DPG-GAN [13] to
generate virtual person samples with different poses. In addi-
tion, the generated samples are transferred to styles of different
cameras by Star-GAN [14] for overcoming the camera varia-
tions [34], [35]. Note that the training procedures of DPG-GAN
and Star-GAN do not need any labeled identity information.

DPG-GAN: DPG-GAN is an unsupervised person generation
method that can obtain the novel person image from Gaussian
noise. A generator is proposed to disentangle pose information,
foreground and background masks of unlabeled real data and en-
code them into embedding representations. These embeddings
are decoded to reconstruct the input image with L1 loss. Besides,
three generators are introduced to generate virtual embeddings
from Gaussian noise, and corresponding discriminators try to
distinguish the embeddings of real data from the virtual embed-
dings. In this way, DPG-GAN learns to synthesis virtual person
samples with different appearances, backgrounds, and poses.

Star-GAN: Star-GAN contains a style transfer model G(x, c)
and a discriminator D(x), where x and c represent input image
and target domain label, respectively. In this paper, we regard
each camera as an independent domain. During training, G is
designed to generate virtual image in the style of target domain c.
D learns to distinguish between real image and style transferred
image, as well as to classify the real image to its correspond-
ing camera domain. We alternatively optimize G and D as the
training strategy in [14].

Virtual Dataset Generation: Given unlabeled real training
data, we first learn a person generation model and a camera
style transfer model with DPG-GAN and Star-GAN, respec-
tively. Then, we use DPG-GAN to randomly generate person
images with different poses and transfer them in the styles of
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Fig. 2. The pipeline of virtual image generation. We first use DPG-GAN to
generate virtual images from Gaussian noise. Then, we assign annotations to
the virtual samples where person samples with the same foreground contain the
same identity. Finally, we transfer the virtual person samples to the styles of
different cameras with Star-GAN on average.

different cameras by Star-GAN. In Fig. 2, we show the pipeline
of virtual person generation, which can be summarized into four
steps:

1) Define the number of identities (classes) Np and number
of samples Ne for each person. In this way, the number of
images in the virtual dataset will be Np ×Ne.

2) Sample real-like foreground vfg , background vbg and pose
vpose embeddings from Gaussian noise and feed them into
pre-trained DPG-GAN for composing virtual person im-
age. For each identity of person, we fix vfg and randomly
sample vbg and vpose Ne times to generate person images
with different poses and backgrounds.

3) Repeat step 2 Np times to generate the whole virtual per-
son dataset. Person images with the same foreground are
assigned to the same identity.

4) Transfer virtual person images into styles of different cam-
eras using pre-trained Star-GAN. For virtual person sam-
ples of each identity, we transfer them to Nc camera styles
on average.
To this end, we generate virtual person data with differ-
ent poses and camera styles. Examples of virtual person
images are shown in Fig. 3.

B. Training Coarse Deep Re-ID Model

Given the labeled virtual person data with Np identities, we
are able to train a deep re-ID model in supervised way. In this
work, we regard the re-ID model training as a classification prob-
lem and train a coarse re-ID model based on IDE [5]. We adopt
ResNet-50 [8] as the backbone network and add two fully con-
volutional (FC) layers after the Pooling-5 layer. The first FC
layer has 1024-dim named as “FC-1024”. The second FC layer
named as “FC-#ID” which has Np-dim. Np is the number of
identities in the virtual person dataset. The cross-entropy loss is
used to train the coarse re-ID model.

C. Collaborative Filtering Based Positive Pair Mining

Although person generation algorithm can produce high-
quality samples, it still generates a certain proportion of poor
instances (e.g., broken limbs or blur background) as shown in
Fig. 3(c) and (f). These poor instances will degenerate the per-
formance of the re-ID model. Coarse deep re-Id model trained
on virtual data is insufficient to discriminate the real data in the

testing set. To address this problem, we attempt to mine positive
pairs from unlabeled data for model refinement.

Definition: We denote the unlabeled real data as U . Given
a query image p ∈ U , our goal is to find the positive sample
sharing the same identity with p from U (except p). Based on
the pre-trained coarse re-ID model, we extract the output of
pooling-5 as the feature for each real image and compute the
pair-wise similarity matrix S between all real images as

Sp,q = exp(−||vp − vq||2), (1)

where vp and vq are normalized pooling-5 features of image p
and q.
k-reciprocal nearest neighbors: Given the computed pair-

wise similarity matrix, we could obtain the k-nearest neighbors
(i.e., the top-k samples in the similarity ranking list) for each real
image. We define the k-nearest neighbors of p asN(p, k). In this
paper, we adopt k-reciprocal nearest neighbors (k-RNNs) [15]
instead of k-nearest neighbors as candidates that may contain
positive samples of p. The k-RNNs for image p is defined as

Rk(p) = {qi|(qi ∈ N(p, k)) ∧ (p ∈ N(qi, k))}, (2)

where qi is among the top-k similar samples of p, and p is also
among the top-k of qi. Intuitively, images in Rk(p) are of high
similarity with p and can be utilized to form positive pairs. We
named this approach as k-reciprocal nearest neighbor based pos-
itive pair mining. However, it will be prone to form false posi-
tive pairs due to illumination, pose variation, and other uncon-
trollable factors. To filter false samples from the candidates of
Rk(p), we then propose a collaborative filtering based positive
pair mining approach to find more reliable samples that share
the same identity with p.

Collaborative filtering based positive pair mining: Collabo-
rative filtering (CF) is a technique utilized by recommender sys-
tems for preference prediction [36]. The underlying assumption
of the user-based CF is that if two persons have a large overlap in
opinions with items, they are very likely to have a similar taste.
Inspired by the user-based CF, we argue that if an image p shares
the same k-RNNs as an image q, they are more likely to be a
positive pair. Based on the shared neighbors between p and q,
we are able to leverage their potential relations and re-calculate
their similarity. As shown in Fig. 4, our approach includes four
steps:

1) Obtaining k-reciprocal nearest neighbors: Given the com-
puted pair-wise similarity matrix, we first calculate the
k-RNNs for each real image according to Eq. (2). For a
query image p, we represent the k-RNNs of p as Rk(p)
and try to find the reliable positive sample from Rk(p).

2) Collaborator mining: We denote collaborators as the
shared k-RNNs of two images. Thus, given a query image
p and a candidate image q in Rk(p), the collaborator set
C of p and q is defined as:

C(p, q) = {ci|(ci ∈ Rk(p)) ∧ (ci ∈ Rk(q))}. (3)

3) Collaborative filtering similarity: Based on the collabo-
rator set of p and q, we calculate the filtered similarity
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Fig. 3. Examples of virtual person images on Market-1501 and DukeMTMC-reID. Despite the successful virtual images, failure instances (e.g. incomplete body
parts and blurred backgrounds) may influence the performance of deep re-ID model.

Fig. 4. Collaborative filtering based positive pair mining. Given a query image p (blue) of real data, we first compute the k-reciprocal nearest neighbors Rk(p)
of p (green). Then, the collaborator set (blue) of p, and each candidate q in Rk(p) is mined in step (b). The collaborative filtering similarity of p and each candidate
q in Rk(p) is calculated by Eq. (4) in step (c). Finally, image pair with the highest re-calculated similarity is selected as the positive pair (green) in step (d).

as:

Fp,q = Sp,q +

|C|∑
i=1

wq,ciSp,ci , (4)

where | · | denotes number of candidates in a set, andwq,ci

is the normalized weight to measure the significance of
collaborator ci, defined as:

wq,ci =
Sq,ci∑|C|
i=1 Sq,ci

. (5)

The filtered similarity not only considers the original pair-
wise distance of p and q, but also takes the similarities
between p, q and the collaborator set into consideration.

4) Positive pair mining: With the calculated collaborative
filtering similarities between query image p and images

in Rk(p), image q∗ with the highest similarity F is se-
lected to construct a positive pair (p, q∗) for re-ID model
fine-tuning:

q∗ = argmax
q∈Rk(p)

Fp,q. (6)

5) Camera constraint: In practice, we find that positive pairs
obtained by our algorithm are always in the same camera.
This phenomenon may make the re-ID model sensitive
to camera variations, while the primary goal of re-ID is
to retrieval a person across different cameras. To alleviate
this problem, we attempt to add the constraint of removing
image sharing the same camera during the computation of
k-RNNs for p and q. We evaluate three types of constraint:
� Free: there are no constraints for p and q;
� Single: we add the constraint for p, while not for q;
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� Double: we add the constraint for both p and q, and
this is the default setting.

D. Model Fine-Tuning

After mining the positive pairs of real data, we combine them
together with the generated virtual data to refine the previous
coarse deep Re-ID model. Triplet loss project similar pairs into
a feature space with a smaller distance than dissimilar pairs,
which can be adopted for the selected positive training pairs.
Another reason to use triplet loss on positive pairs is that we do
not have the real label for selected real images, cross-entropy
loss can not be obtained.

During training, we randomly select N anchor images from
real data and their corresponding mined positive samples to form
the training batch. For each anchor pi, we directly assign the
same pseudo label of pi to its mined positive sample q∗i , and
select the hardest (closest) sample zi as the negative sample
within the other N − 1 anchor images and their corresponding
positive samples. The final triple loss function is as following,

Ltri =

Nr∑
i=1

[
||f(pi)− f(q∗i )||2 − ||f(pi)− f(zi)||2 +m

]
+
,

(7)
where m is a margin that is enforced between positive and neg-
ative pairs, and f(·) is the pooling-5 feature of the deep re-ID
model. Nr is the number of anchors in the training batch.

As we already have the pseudo labels of the generate virtual
data, we directly use the IDE cross-entropy loss function Lcls.
By merging these two losses into a multi-task training frame-
work, we then have the final loss as:

Lloss = Lcls + λLtri, (8)

where λ is a hyper-parameter controlling the influence of Lcls

and Ltri.
When finished training the re-ID model for each epoch, the

parameters of the deep re-ID model will be updated and the
adjacent matrixSof the real data will also be updated. As a result,
we need to proceed a positive pair mining step for each epoch.
The final model can be trained by using loss function (8). By
doing so, the real data can help increase the final re-ID accuracy
by eliminating negative effects of distorted virtual images while
virtual data stabilizes the training process and the keep basic
performance of re-ID model.

IV. EXPERIMENTS

To evaluate the performance of our proposed method, we
conduct experiments on two large-scale benchmark datasets:
Market-1501 [11] and DukeMTMC-reID [37], [38]. The mAP
and rank-1 accuracy are adopted as evaluation metrics.

Market-1501 dataset contains 32,668 bounding boxes of
1,501 identities obtained from six cameras. 751 persons are used
for training while the rest for testing (750 identities, 19,732 im-
ages). The probe set contains 3,338 images for querying true
person images from gallery set.

DukeMTMC-reID dataset is a subset of DukeMTMC [38]
which consists of 36,411 labeled bounding boxes of 1,404 iden-
tities pictured by 8 different cameras. Similar to the protocol of
Market-1501, this dataset split 16,522 images of 702 identities
for training, 2,228 probe images and 17,661 gallery images from
the rest for testing.

A. Experiment Settings

DPG-GAN: We train the DPG-GAN by 120,000 epochs with
a batch size of 16. The learning rates of all networks are set
to 0.00008 and divided by 10 in every 10,000 epochs. All in-
put images are resized to 128 × 64. We use the same network
architectures following [13].

In virtual person generation stage, we use Np to represent the
number of individuals/identities included in virtual dataset while
Ne denotes the number of images generated for each person.
Unless otherwise specified, we generate virtual datasets with
Np = 600 and Ne = 36 for Market-1501, and with Np = 600
and Ne = 48 for DukeMTMC-reID.

Star-GAN: The Adam solver is employed to train G and D of
Star-GAN for a total 200 epochs with a batch-size of 40. Input
images are resized to 128 × 128. The learning rates for D and
G are initialized to 0.0001 and linearly reduced to 0 for the last
100 epochs. We employ the network structures following [14].

During camera style translation, one-hot label of target cam-
era is tiled and concatenated with input images to form a
128× 128× (Nc + 3) tensor, the tensor is then sent to U-Net-
like generator for style translation. Nc is the total number of
cameras for corresponding real dataset. We convert images from
virtual data to different camera styles on average. In other words,
each image is transferred to one style of cameras.

Re-ID Model Training: We resize input image to 256 ×
128, and employ random horizontal flipping and random crop-
ping for data argumentation. The SGD solver is used for opti-
mization with a learning rate initialized as 0.1 and divided by
10 after 100 epochs. We train the re-ID model with 150 epochs
in total. For positive pair mining, we first train the re-ID model
by only using the virtual data for 100 epochs. After that, we
add the mined positive pairs from real data for fine-tuning
with another 50 epochs. Other parameters are set as follows:
the triplet loss with anchor batch size Nr = 50 and a margin
m = 0.3,k-reciprocal nearest neighbors withk = 50, and λ = 1
in Eq. (8).

B. Comparison With State-of-The-Art

In order to compare with other competing unsupervised re-ID
methods, we train two models with generated virtual datasets for
the Market-1501 and DukeMTMC-reID dataset, respectively.
All the experimental results of our method and other methods
are reported in Table I. As can be seen, our method outperforms
all previous unsupervised re-ID methods. On Market-1501, we
can get a rank-1 accuracy of 63.9%, which is 9.4% higher
than the previous state-of-the-art method CAMEL [21]. On the
DukeMTMC-reID, our method can also beat PUL [12] with
a 5.9% higher rank-1 accuracy. Additionally, we compare our
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TABLE I
UNSUPERVISED PERSON RE-ID PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS ON MARKET-1501 AND DUKEMTMC-REID
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TABLE II
ABLATION STUDY OF OUR APPROACH. BASED ON THE RE-ID MODEL TRAINED

ON DPG-GAN, WE ADD STAR-GAN, POSITIVE PAIR MINING GRADUALLY

INTO IT TO EVALUATE THE RE-ID ACCURACY

method with three domain adaptation methods. Domain adap-
tation methods train a model with a labeled dataset and then
transfer it to another dataset. As can be seen from Table I, our
method outperform all three methods on Market-1501 dataset,
with a 12.4% higher rank-1 accuracy compared with the best
SP-GAN. On DukeMTMC-reID, the accuracy of our method is
higher than UMDL and PT-GAN, but lower than SP-GAN. The
main reason is that the generated virtual images still contain lots
of low-quality samples which directly affect the accuracy of our
method.

C. Ablation Study

The method discussed in Section III contains three main
components: DPG-GAN, Star-GAN and positive pair mining.
In order to figure out which component contributes most for
the accuracy, we evaluate the performance by gradually adding
Star-GAN and positive pair mining into re-ID model training.
As can be seen in Table II, after adding the Star-GAN, the rank-1
on Market-1501 dataset can boost from 33.8% to 51.7%, which
demonstrates that camera-style transfer plays a significant role
in re-ID model initialization. Then including the positive pair
mining step, we observe a further 12.2% rank-1 accuracy im-
provement on Market-1501. Adding real data into training can
help reducing the gap between the generated virtual data and un-
labeled real data. On DukeMTMC-reID dataset, we have similar
findings.

To assess the effectiveness of the proposed collaborative fil-
tering based mining procedure, we perform another comparison
between method without mining, nearest selection and collab-
orative filtering. During the mining process, nearest selection
takes the most similar image from k-reciprocal neighbors of

Fig. 5. The effectiveness of collaborative filtering based positive pair mining.
We compare with the re-ID models trained without mining and with nearest
selection mining. (a) The rank-1 accuracies of the model trained with different
strategies, w/o mining, nearest selection, and collaborate filtering. (b) The true
positive rate (TPR) during the whole train phase of nearest selection and col-
laborate filtering. The proposed mining strategy can increase TPR by a large
margin.

the anchor image as positive sample under the default ”double
constraint” setting. As shown in Fig. 5(a), the nearest selec-
tion based mining step and our proposed collaborative filtering
based mining step can improve the re-ID result compared with
the one without mining. The proposed collaborative filtering out-
performs the nearest selection on rank-1 accuracy by 6.9% and
1.8% on the two datasets respectively. We also validate the ac-
curacy of the mined pairs belonging to the same identity during
the whole fine-tuning step by using the ground-truth information
of two datasets in Fig. 5(b). The accuracy of nearest selection is
60.3% and 38.3% for Market-1501 and DukeMTMC-reID, re-
spectively. After employing the collaborative filtering, the accu-
racies increase to 67.5% and 40.5%, which means the quality of
mined positive pairs is improved by using our proposed method.

In triplet training phase, we randomly select N anchor im-
ages and their corresponding mined positive samples to form
the training batch. For each anchor, we randomly select hardest
sample as the negative within the other N − 1 images and their
corresponding positive samples. In this way, the probability of
selecting the real positive sample as the negative is very low
when sampling a few images from a dataset containing a large
number of images and identities. We evaluate the overall false
negative rate throughout the training process, which is 2.6%
and 3.1% for Market-1501 and DukeMTMC-reID, respectively.
These low rates might likely have a slightly negative effect on
performance. Due to the competitive performance, we would
rather consider the effect of selecting the real positive sample as
the negative to be very small.
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Fig. 6. Sensitive analysis for Ne and Np. Increasing the size of virtual dataset
may help improve re-ID accuracy in a certain degree.

Fig. 7. Sensitive analysis for k and Nr . Our approach is robust to the changes
of k and Nr .

D. Sensitive Analysis

To check the sensitive of method with different hype-
parameters, we do a thorough evaluation of: (1) the scale of
generated virtual dataset (Np and Ne), (2) the batch-size of real
positive pair Nr and the value of k, (3) the influence of the λ for
the Lcls and Ltri.

Large-scale virtual dataset has positive impact: Intuitively,
we conduct a series experiments to evaluate the influence of
the scale of the generated virtual datasets. Fig. 6(a) presents
the relationship between Np and rank-1 accuracy by changing
Np from 100 to 700 with a fixed Ne. We set Ne to 36 and 48
for Market-1501 and DukeMTMC-reID, respectively In general,
re-ID model performs better with largerNp, but the accuracy will
begin to saturate when Np is large enough. The same is true for
Ne as shown in Fig. 6(b). We fix Np to 600 and vary Ne. The
rank-1 accuracy will saturate when Ne = 36 for Market-1501
and 48 for DukeMTMC-reID, respectively. The results demon-
strate that enlarging the scale of virtual dataset can improve
performance of model in a certain degree.

VariousNr and k have less effect: We perform another experi-
ment to check how many positive pairs are needed for fine-tuning
the final re-ID model. As shown in Fig. 7(a) and (b), the rank-1
accuracy are fluctuated in a very small range around 63.9% and
36.3% for Market-1501 and DukeMTMC-reID by using vari-
ous Nr and k. But in practice, we still suggest using a large k to
ensure that k-reciprocal nearest neighbors can always be found.

Both Lcls and Ltri are important for model optimization: We
evaluate our model with different λ values to find out which part
contributes most for the accuracy of model. Fig. 8 shows that
rank-1 accuracy of our model improves with the increase of λ

when λ is in the range of [0, 1]. However, when λ exceeds 1,
the rank-1 score begins to decrease. The best result is achieved
when λ is around 1. The results prove our claims that both Lcls

and Ltri are important for our model. Lcls helps model to learn
robust features whileLtri eliminates the negative effects brought
by virtual images.

Fig. 8. Sensitive analysis for λ shows that Ltri and Lcls contribute equally
to the accuracy of our method. Best result is achieved when λ is around 1.

TABLE III
COMPARISON BETWEEN DIFFERENT TYPES OF CAMERA CONSTRAINTS

IN THE K-RNN COMPUTATION STEP

- -
--

TABLE IV
RESULTS ON THE TWO-CAMERA SUBSET OF THE MARKET-1501 DATASET

- -

Removing positive pairs from the same camera is necessary
for improving the accuracy: We also compare the influence of
three camera constraint settings discussed in Section III during
the k-RNN computation procedure on the whole Market-1501
and DukeMTMC-reID dataset. The results are reported in Ta-
ble III. As can be seen, the “Double” constraint obtains slightly
better performance than the “Single” constraint, but both of them
clearly outperform the “Free” constraint. This is because that
positive pairs from the same camera are usually the same person
with an extremely similar appearance, these easy pairs are not
very helpful for cross-camera retrieval. Therefore, it is preferred
to remove these pairs during the step of positive pair mining.

E. Proposed Framework in Two-Camera System

In this section, we conduct experiments in a two-camera re-ID
system by using a two-camera subset of the Market-1501 dataset
(camera 1 and camera 6). The illumination of camera 1 and 6
of Market-1501 are quite different. Then we use the two-camera
subset for model training, and testing on both the two-camera
subset and the whole six-camera test set. Since the proposed
framework will not work under the default “Double constraint,
we only test the “Free” and “Single” constraints.

We first train the DPG-GAN and Star-GAN by using the
two-camera subset and generate a virtual dataset with 600 IDs
and 21600 images (Np = 600, Ne = 36) for re-ID model
initialization. Then we fine-tune the re-ID model by mining
with “Free” and “Single“ constraints. We report these results in
Table IV. The model without the mining step only gives
9.4% mAP and 18.4% mAP in two test settings. However, when
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TABLE V
EXPERIMENTAL RESULTS OF THE MODEL TRAINED WITH THE VIRTUAL DATASET AFTER CLEANING THOSE DISTORTED SAMPLES. WE GENERATE SEVERAL

DIFFERENT VIRTUAL DATASETS AND REMOVE THE BOTTOM 10% TO 50% OF IMAGES WITH A LOWER CONFIDENCE SCORE BY USING A DISCRIMINATOR D
TRAINED FROM BOTH REAL AND VIRTUAL IMAGES. IS IS THE INCEPTION SCORE (IS) [39] THAT MEASURES THE QUALITY AND DIVERSITY OF GENERATED IMAGES

- -

adding the “Free” constraint, the mAP will decrease to 8.9%
and 16.8%. This is because most positive pairs mined under the
“Free” constraint are from the same camera. Using such easy
positive pairs will result in overfitting of the model and thus has
negative effects during the triplet loss fine-tuning step. When
training the model with “Single” constraint, we can see a signif-
icant boost, improving the mAP to 27.8% and 24.7% in two test
settings, respectively. These results suggest that it is essential to
remove positive pairs from the same camera.

We also compare our model with SP-GAN, which is trained on
images of all six cameras. Even trained with samples of two cam-
eras, “ours (Single)” outperforms SP-GAN on the two-camera
subset and achieves competitive results on the whole six-camera
test set.

F. Re-ID Accuracy After Cleaning Distorted Images

Since the badly distorted virtual images may still be harmful
for the accuracy, in this section, we test the performance of the
model trained with cleaned virtual datasets.

Instead of removing those distorted images manually, we train
a discriminator D with both real and virtual images. Then we
estimate the confidence score for the generated training set by
using the discriminator D and remove those images with lower
scores.

In Table V, we report how the cleaning rate (CR) influences
the re-ID accuracy and inception score (IS) [39] from 10% to
50%. IS measures the quality and diversity of generated images.
In order to keep the number of training images to be the same for
each CR, we generate virtual datasets with different sizes and
remove images with lower scores at a certain rate. For instance,
when the CR is 10% on Market-1501, we first generate virtual
dataset withNe = 40 andNp = 600, then remove 4 (40× 10%)
images with lower confidence for each ID. Under this scenario,
all virtual sets for experiment are roughly the same size.

As can be seen from Table V, when tested on Market-1501,
our model achieves slight improvement after removing bottom
20% of images with low confidence, and the IS is increased from
3.83 to 4.08. This demonstrates that our cleaning scheme could
discard badly distorted virtual images to some extent. On the
other hand, we also notice a significant decline of the IS when
CR is greater than 20%, which may be caused by the drop in
diversity in the cleaned dataset. On DukeMTMC-reID, we have
a similar observation that a large decrease in IS will result in a
large drop in accuracy. However, we also notice that a slightly
improvement of IS when removing the bottom 20% distorted

images, while the final re-ID accuracy still decreases. The pos-
sible reason is that the overall quality of generated images is low
due to the high complexity of DukeMTMC-reID dataset. There-
fore, removing those low confident images can not effectively
increase the overall quality of the virtual dataset, and does not
help to improve the re-ID accuracy.

V. CONCLUSION

In this paper, we consider a challenging problem in person re-
identification (re-ID), where labels are not provided in training
data. To optimize deep re-ID model in supervised way, this work
generates virtual dataset with a person generation model and a
camera style model. Moreover, a collaborative filtering based
positive pair mining approach is proposed to explore reliable
positive samples from real data. This enables us to refine the
re-ID model with virtual and real data, and thus improves the
discriminative representation of the re-ID model. Experiments
on two benchmark datasets show that our method outperforms
current unsupervised re-ID algorithms. In the future work, we
will focus on learning a person generation model that jointly
considers the pose and camera variations and produces higher
quality virtual images.
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