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A Global and Local Enhanced Residual U-Net
for Accurate Retinal Vessel Segmentation

Sheng Lian, Lei Li, Guiren Lian, Xiao Xiao, Zhiming Luo, and Shaozi Li

Abstract—Retinal vessel segmentation is a critical procedure towards the accurate visualization, diagnosis, early treatment and
surgery planning of ocular diseases. Recent deep learning-based approaches have achieved impressive performance in retinal vessel
segmentation. However, they usually apply global image pre-processing and take the whole retinal images as input during network
training, which have two drawbacks for accurate retinal vessel segmentation. First, these methods lack the utilization of the local patch
information. Second, they overlook the geometric constraint that retina only occurs in a specific area within the whole image or the
extracted patch. As a consequence, these global-based methods suffer in handling details, such as recognizing the small thin vessels,
discriminating the optic disk, etc. To address these drawbacks, this study proposes a Global and Local enhanced residual U-nEt
(GLUE) for accurate retinal vessel segmentation, which benefits from both the globally and locally enhanced information inside the
retinal region. Experimental results on two benchmark datasets demonstrate the effectiveness of the proposed method, which
consistently improves the segmentation accuracy over a conventional U-Net and achieves competitive performance compared to the
state-of-the-art.

Index Terms—Retinal Vessel Segmentation, Deep Learning, Weighted Res-UNet, Global and Local Enhance
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1 INTRODUCTION

According to reports in [1]–[3], Diabetic Retinopathy (DR),
Glaucoma and Age-related Macular Degeneration (AMD) are
the leading cause of blindness in the aging population. These
statistical results promote researchers to develop the automatic
diagnosis systems for retinal pathology. The retina is the only
human body part which can observe the microcirculation through
a noninvasive fundus examination. With the complex fundoscope
system, digital retinal images can provide a magnified view of
retina area, including retinal vessel branches, optical disk and
macula. The subtle changes and abnormalities in retinal vessel
structures can be deemed as an important signal for diagnosing
multiple diseases, including DR [4], AMD [2], cardiovascular
disease [5], hypertension [6] and many chronic eye diseases [7].
The task of retinal vessel segmentation is to classify pixels that
belong to the vessel region in given retinal images, which plays an
important role in ophthalmologists’ diagnosing procedure.

Manual retinal vessel segmentation is a time consuming and
tedious task even for a well-trained ophthalmologist. However,
the diagnosis of retinal diseases, especially some acute diseases,
require an urgent feedback. As such, computer-aided automatic
retinal vessel segmentation can help for reducing medical costs,
avoiding delayed treatment and improving efficiency. Although
the quality of retinal imaging has improved significantly with the
improvement of new imaging technology [8], automatic retinal
vessel segmentation is still a challenging task. The main chal-
lenges can be briefly summarized as follows:

• Indistinct small vessels: Small blood vessels located at
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the end of branches have extremely low contrast which are
even indistinguishable for professional ophthalmologists.

• Low contrast at optic disk area: Optic disk area is usually
brighter and with lower contrast, which makes it hard to
recognize the retinal vessels in this area.

• Complex bifurcated structure: Retinal vessels have com-
plex bifurcated structure similar to trees, such as bifurca-
tions, crossovers, closely parallel vessels, and junctions,
which are difficult to maintain.

• Influence of abnormal area: Some retinal images are with
abnormal lesions, such as microaneurysms and exudates,
which increase the difficulty of the segmentation task.

• Illumination: Poor or overexposed illumination caused by
the light source of camera will reduce image contrast,
which results in the non-sharp boundary of retinal vessels.

To deal with these challenges, existing learning-based ap-
proaches usually apply an global image-level pre-processing op-
eration on the whole retina image to enhance the image contrast
and randomly crop patches for learning a segmentation model.
However, only considering the image-level statistical information
for pre-processing will lose sight of the local information which
are important for recognizing low-contrast local small vessels.

Retina only appears in specific area, in which pixels outside
this area are useless for segmentation, then it’s essential to get
rid of the irrelevant noisy background. Meanwhile, global image-
level and local patch-level pre-processing operations are comple-
mentary schemes for enhancing the retinal image contrast. In this
paper, we propose a Global and Local enhanced residual U-nEt
(GLUE) model with a cascaded refinement structure to tackle this
challenging retinal vessel segmentation task. Our model as shown
in Fig. 1 is composed of two parts, a weighted U-Net (WUN) and
a weighted residual U-Net (WRUN). First, the WUN produces a
coarse segmentation map from globally enhanced patches. Then
the WRUN refines this coarse segmentation by integrating locally
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Fig. 1. The overall pipeline of our proposed model which contains two parts. A weighted U-Net (WUN) takes the globally enhanced patches as input
to produce a coarse segmentation, and a weighted residual U-Net (WRUN) with locally enhanced patches along with previous segmentation results
as input to perform a refinement. GCP and LCP indicate Global CLAHE pre-processing and Local CLAHE pre-processing, respectively.

enhanced patches, whose parameters are learned automatically
instead of manually fine-tuned. In addition, we also add residual
connections in the second part of our model (WRUN) for learning
more discriminative features. Compared to previous UNet-like
structure [9], [10], we also utilize a cascaded U-Net structure
which can benefit from both local and global enhanced retinal
images. After all these improvements, our model can learn more
discriminative features for distinguishing vessel and non-vessel
pixels and have a better maintaining of the retinal vessel tree
structure.

To evaluate the performance, we conduct experiments on
two representative datasets, DRIVE dataset and STARE dataset.
Experimental results demonstrate that our proposed method out-
performs previous representative approaches. The comparison
between the coarse and refined segmentation results shows the
effectiveness of our proposed cascade refinement scheme. Besides,
the visual example results in the zoomed-in view indicate that
our model can deal with challenging situations. This paper is
an extension to our previous ITME2018 conference paper [11].
In this version, we make several significant improvements by
incorporating globally and locally enhancement on retinal images,
and construct our model in a cascaded manner to do a refinement.

The rest of the paper is organized as follows. In Section 2,
we review representative retinal vessel segmentation methods. In
Section 3, we describe the proposed method in detail. In Section 4,
we reported the experimental results. And we conclude our paper
in Section 5.

2 RELATED WORK

Realizing the importance of retinal vessel segmentation task,
different segmentation methods have been proposed. Excellent
surveys of the existing methods for retinal vessel segmentation can
be referred in [12], [13]. In this section, we briefly introduce some
of the most representative work. In general, the retinal blood vessel

segmentation methods can mainly be divided into unsupervised
and supervised.

Unsupervised methods attempt to find inherent patterns of
retinal vessels without any manual annotation. Most of these
approaches are rule-based techniques, including vessel track-
ing [14]–[16], matched filtering [17]–[19], morphological process-
ing [20]–[22], thresholding [23]–[25], etc.

Yin et al. [14] exploit the fact that retinal vessels have
connected branch-like structure, and proposed a vessel tracking-
based segmentation method. In this method, a Bayesian method
is used to detect vessel edge points by maximizing the posterior
as criterion . Given these initial seed points, the entire vessel
tree is tracked by following the vessel centerline based on local
information. With the assumption that retinal vessel’s intensity
can be modeled as a Gaussian-shaped curve, Wang et al. [18]
proposed a Matched Filtering-based method with multiwavelet
kernels and multiscale hierarchical decomposition. In this study,
vessels are enhanced using matched filtering with multiwavelet
kernels. Knowing that vessels are linear and connected structures
in retina, mathematical morphology can be adopted. Fraz et al.
[20] used the first order derivative of a Gaussian filter to identify
vessel centerlines, followed by a multi-directional morphological
top-hat transform to segment the vessels. Moreover, one possible
way to delineate retinal vessel pixels is to segment by local
thresholding. For example, Jiang et al. [23] proposed an adap-
tive local thresholding framework on a verification-based multi-
threshold probing scheme to segment retinal vessels. Generally,
compared to supervised methods, unsupervised methods have a
higher segmentation speed, lower computational complexity but
lower segment accuracy.

Supervised methods segment retinal vessels by learning a
model from a training set annotated by experienced ophthal-
mologists. All of the supervised methods try to select the most
discriminative set of feature vectors from training images to better
classifying vessel and non-vessel pixels. The supervised classifiers
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in such methods range from k-Nearest-Neighbor (kNNs) [26],
[27] and support vector machines (SVM) [28], [29] to more
complex models such as deep neural networks [30], [31], etc.
Niemeijer et al. [26] extract only the green plane of retinal
images and conduct k-NN algorithm as classifier to determine
the pixels’ class. Based on the assumption that image ridges
coincide approximately with vessels’ centerline, Staal et al. [27]
proposed a ridge based vessel segmentation methodology with
k-NN classifier. Ricci et al. [28] adopt line operation as feature
vector and use SVM for pixel classification. In this method, a line
detector based on the evaluation of the average gray level alone
lines is applied for first stage unsupervised classification. Then,
two orthogonal line detectors are adopted to construct feature
vectors for supervised classification using an SVM. Nekoveiet al.
[30] applied a multilayer perceptron neural network, for which the
inputs were derived from a principal component analysis (PCA),
to identify retinal vessel pixels. To our best knowledge, this paper
is the first study to use artificial neural networks-based method for
retinal vessel segmentation.

Benefit from the emergence of large-scale data, the rapid
development of computing power and the presentation of various
artificial neural network models, deep learning-based methods
boost dramatically in the field of computer vision [32]–[34].
Accompanied by these developments, Convolutional Neural Net-
works (CNN) has become an effective approach for analysing
medical image [35]–[37], solving medical image segmentation
problems [38]–[40] and can reach the state-of-the-art performance
in the task of retinal vessel segmentation [41]–[43]. In this part,
we will review several CNNs based retinal vessel segmentation
methods. Wang et al. [44] proposed a segmentation method which
uses CNN as a feature extractor and random forests as the final
classifier. Wu et al. [45] firstly use the CNN to extract binary
mask and then use a generalized particle filtering technique to
extract retinal vessel tree under a probabilistic tracking framework.
Later, Fu et al. [46] developed a multi-scale and multi-level CNN
model to do the segmentation and used a Conditional Random
Field (CRF) to consider the long-range interactions between
pixels. Dasgupta et al. [47] utilized the fully convolutional neural
networks and the multi-label inference to do structure predictions
of the blood vessel. Son et al. [48] presented a method that adopts
the generative adversarial training to improve the segmentation
performance. Recently, Zhang et al. [49] proposed an architecture
to sufficient use multi-level features and added atrous convolu-
tion to get effective multi-scale features for retinal blood vessel
segmentation task. Oliveira et al. [43] combined the multiscale
analysis provided by the Stationary Wavelet Transform with a
multiscale Fully Convolutional Neural Network to cope with the
varying width and direction of the vessel structure in the retina.
Memari et al. [42] utilized a genetic algorithm enhanced spatial
fuzzy c-means method for extracting an initial blood vessel net-
work, with the segmentation further refined by using an integrated
level set approach.

In a supervised method, the classification criteria are deter-
mined by the ground truth data based on given features. However,
data annotated by professional doctors is usually expansive and
difficult to obtain. As supervised methods are designed based on
pre-classified data, their performance is usually better than that of
unsupervised ones and can produce pretty good results for healthy
retinal images. Although supervised methods, especially CNN-
based methods have achieved satisfactory segmentation results in
many scenarios, there are still many challenging issues of dealing
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Fig. 2. Three groups of result patches after locally and globally CLAHE
processing. Here, we plot examples of original patches, gray scaled
patches, global CLAHE processed (GCP) patches, local CLAHE pro-
cessed (LCP) patches in zoom-in view.

with small vessels, poor illumination, etc.

3 PROPOSED METHOD

In this section, we describe the proposed Global and Local
enhanced residual U-nEt (GLUE) model for tackling the reti-
nal vessel segmentation task in detail, and the overall pipeline
is shown in Fig. 1. The proposed model is a cascaded CNN
model which consists of 2 parts, a WUN and a WRUN. The
WUN takes the globally enhanced patches as input to produce
a coarse segmentation, and the WRUN takes the locally enhanced
patches along with previous segmentation results as input to do a
refinement. The remainder of this section is organized as follows.
Section 3.1 introduces the retinal image pre-processing steps used
in our approach. Section 3.2 describes the detailed architecture
of our proposed GLUE model. Finally, the scheme of overlapped
prediction patches regrouping is discussed in Section 3.3.

3.1 Retinal Image Pre-processing
Globally and Locally Contrast Enhancement: As can be seen
from Fig. 2, the original retinal image is with extremely low
contrast. Suitable pre-processing steps can increase the contrast
which alleviate the learning difficulty of CNNs and get better
performance. In the following, we introduce the pre-processing
steps that we applied in this study. For each retinal image, we
resize it to 512∗512 and convert it into grayscale. To increase the
retinal images’ contrast, the contrast limited adaptive histogram
equalization (CLAHE) [50] operation is applied on retinal images.
Here, we apply CLAHE operation both globally on entire retinal
image, and locally on extracted retinal image patch.

Global CLAHE processing (GCP) and local CLAHE process-
ing (LCP) are complementary with each other. Applying CLAHE
operation on the entire image can maintain global information and
avoid the degeneration effects of local noise like light reflection
and diseased area, but GCP does not work well for some extremely
low contrast areas. On the other hand, performing CLAHE op-
eration in a local area can boost its local contrast information,
especially in local areas with very thin capillary blood vessels.

As shown in Fig. 2, no matter applying CLAHE operation
globally or locally, all the patches’ contrasts are enhanced. The two
schemes have different advantages. For patch 1© and 2© where
the local contrasts are rather low, LCP performs obviously better
than GCP, and the vessels are with more contrast enhancement.
While for patch 3© where light reflection or other local anomaly
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Fig. 3. The brief architecture of proposed GLUE model. The meaning of all types of signs is marked on the top of the picture. In particular, when
all the res-connection switchers are disconnected, the model indicates WUN, which acts as the first part of our approach. While when all the res-
connection switchers are connected, the model indicates WRUN , which serve as the second part of our approach. Due to the different inputs as
introduced in Sec. 4.3, the number of input channel for the first part and second part is 1 and 2, respectively, which is marked in red color in this
figure.

occurs, GCP is more robust than LCP. As such, we propose to use
a cascade deep model to fully utilize the GCP and LCP as shown
in Fig. 1. For the first stage, we apply CLAHE operation on entire
images, then randomly crop globally enhanced image patches for
training. For the second refining stage, we first extract images to
patches and then apply a local CLAHE operation to increase the
local contrast. By doing so, the proposed model can learn more
discriminative features by considering the retinal images’ global
and local statistical information.

3.2 The architecture of the proposed GLUE model

In order to take full utilize of the global and local CLAHE
operation, as well as model the dependencies among adjacent
pixels and thus enforce complex bifurcated structure of the retinal
vessels, we implemented a cascaded CNN model. The architecture
of our proposed GLUE model is shown in Fig. 1 which contains 2
parts, a WUN for coarse retinal vessel segmentation and a WRUN
to refine the segmentation results.

The overall architecture of the proposed WUN and WRUN
is shown in Fig. 3. In particular, when all the res-connection
switchers (marked as gray switch symbols in the picture) are
disconnected, the model indicates WUN, which serves as the
first part of our approach. While when all the res-connection
switchers are connected, the model indicates WRUN, which serve
as the second part of our approach. Similar to the original U-
Net model [51], both the WUN and WRUN have an encoder-
decoder architecture. While beyond such architecture, we made
several significant improvements by adding a weighted attention
mechanism on both parts, and the skip connection scheme on the
second part as introduced in [34]. All the parameters of the model
are given in Fig. 3. In particular, due to the different inputs, the
number of input channel for the first part and second part is 1
and 2, respectively. The first part of our model (WUN) contains
23.49M parameters, and the second part of our model (WRUN)
has 32.43M parameters.

3.2.1 The weighted attention mechanism

The retinal images in DRIVE [27] and STARE [52] dataset are
with circular-like region of interest (ROI) and dark background.
In order to model this geometric constraint, we add an attention
scheme, like our former iris segmentation study [53]. A circular
template ROI maskM is generated to estimate the potential area
where the fundus is most likely to appear. And the generated
attention mask M will be used as a weighted attention scheme,
which is shown in Fig 3 in the bottom as large yellow arrow. The
attention mechanism is implemented by multiplying the model’s
second last layer’s feature maps with an attention mask. This
operation can be expressed as

I(x, y) =
{
F(x, y) ∗ 1.0 (x, y) ∈M
F(x, y) ∗ 0.0 (x, y) /∈M

, (1)

in which F(x, y) represents the features at position (x, y). Due
to the generate attention masks are very accurate, so we simply
set the attention weight to be 1.0. But this does not mean that
our attention mechanism is invalid. When the retinal images are
extracted into patches, the attention mechanism can help our
model better locate the target area in each patch.

By using this weighted attention mechanism, our model will
only pay attention at the target ROI area and discard the irrelevant
noisy background. For the DRIVE dataset, we directly use the
provided mask of fundus area as the weighted attention mask.
While for STARE dataset, we computed the attention mask by a
simple processing step which we convert the retinal image into
grayscale, apply Gaussian filtering and then separate the fundus
regions by doing binary thresholding at the value 40. On the
DRIVE dataset, our mask extraction method can reach an accuracy
of 99.2%. For more general cases, we may not get a perfect mask
from noisy background, as such we can get the attention mask by
using soft weight such as 0.1 instead of directly ignore them.

As indicated in Fig. 3, both the proposed WUN (first part of
our approach) and WRUN (second part of our approach) adopt this

Authorized licensed use limited to: Xiamen University. Downloaded on April 10,2021 at 01:20:14 UTC from IEEE Xplore.  Restrictions apply. 



1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2917188, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

GT ours GT

DRIVE STARE

U-Net oursU-Netoriginal original

Fig. 4. Examples of retinal vessels segmentation result from DRIVE dataset (listed in the left) and STARE dataset (listed in the right). Results show
that our model can deal well with the problems of low illumination, hard area of the optic disk. Moreover, our model shows better blood vessel
connectivity than U-Net. Detailed results in zoom-in view of extracted patches are displayed in Fig. 5.

weighted attention mechanism for better modeling the geometric
constraint of fundus.

3.2.2 The skip connection scheme
As demonstrated in [34], adding skip connection can increase the
depth and improve the accuracy of deep CNNs. Inspired by this
work, we also added skip connections into the second part of
our model as indicated by the solid gray arrow in Fig. 3. For
each convolutional block in WRUN, the skip connection scheme
is implemented by using the following equation

y = F (x, {wi}) +H(x), (2)

where F consists of two convolution operations and one max-
pooling or one up-sampling operation, H is either the identical
mapping or a convolution operation to keep the input with the
same feature dimensions as F .

Notice that, as introduced in Section 3.2, the first part of our
model is the WUN without residual connection. In this way, in
coarse segmentation step, our model can utilize the weight of
network pre-trained on ImageNet [54].

3.2.3 Loss Function
In order to train the proposed model, we choose the binary cross
entropy as segmentation loss function for both the WUN and the
WRUN, which goes as

L(p, q) = − 1

n

n∑
k=1

qk log pk + (1− qk) log (1− pk), (3)

where n represents the total number of training pixels, p and q
represent predicted probability and its corresponding groundtruth
(0 for background pixels and 1 for blood vessel pixels).

3.3 Patch Regrouping
During the testing phase, instead of doing a random overlapping
patch cropping as in the training phase, we extract 64× 64 image
patches in sequence with an overlapping stride of 8. For each
512 × 512 testing retinal image, the number of overall extracted
patches is ((512 − 64)/8 + 1) ∗ ((512 − 64)/8 + 1) = 3249.
After getting the prediction of each patch, we can easily get the
final segmentation result of the whole retinal image by regrouping
the results from all the patches according to their positions.
Specifically, for all the overlapped pixels, our computed the
probability map by averaging the values of all the overlapped
pixels’ predictions.

TABLE 1
The details of the two datasets used for evaluation

Dataset DRIVE STARE

Sensor
Canon CR5

non-mydriatic
3CCD camera

TopCon TRV-50
fundus camera

Resolution 565*584 700*605
Format tif ppm
Color RGB RGB

# of training 20 10
# of testing 20 10

4 EXPERIMENTS

4.1 Datasets
We evaluate the performance of our method on two publicly
available benchmark datasets: DRIVE [27] and STARE [52]. Both
the two datasets are representative dataset in the task of retinal
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TABLE 2
Accuracy, Sensitivity, Specificity and Precision comparisons on proposed GLUE model and other promising approaches. Here we list the main
methods used in each paper. The acronyms for the algorithms stand for: Bayesian method with a maximized posterior (BMP), matched filtering

(MF), adaptive thresholding (AT) morphological top-hat transform (MTHT), bit plane slicing (BPS), region growing (RG), minimum error
thresholding (MET), fuzzy c-means (FCM), cuckoo search (CS), morphological component analysis (MCA),adaptive thresholding (AT),gray level

co-occurence matrix (GLCM), Laplacian of Gaussian (LoG), contrast limited adaptive histogram equalization (CLAHE), Gaussian smoothing (GS),
generalized linear model (GLM), moment-preserving thresholding (MPT), line detector (LD), hysteresis thresholding (HT), support vector machine

(SVM) gradient orientation analysis (GOA), morphological transformation (MT), Gabor filter response (GFR), decision trees (DT), convolutional
neural networks (CNN), random forest (RF), hand-craft features (HCF), Gaussian mixture model (GMM), conditional random fields (CRF), fully
convolutional networks (FCN), structured output support vector machine (SOSVM), stationary wavelet transform (SWT), and late fusion (LF)

Method Method Year DRIVE STARE
Acc Sen Spec Prec Acc Sen Spec Prec

2nd human expert - 0.9725 0.7760 0.9725 0.8123 0.9346 0.8956 0.9381 0.6361
Unsupervised methods

Yin et al. [14] BMP 2013 0.9267 0.6522 0.9710 - 0.9420 0.7034 0.9668 -
Wang et al. [18] MF + AT 2013 0.9461 - - - 0.9682 - - -
Fraz et al. [20] MTHT + BPS + RG 2013 0.9422 0.7302 0.9742 0.8112 0.9423 0.7318 0.9660 0.7294
Odstrcilik et al. [55] MF + MET 2013 0.9340 0.7060 0.9693 - 0.9341 0.7847 0.9512 -
Emary et al. [56] FCM + CS 2014 0.9376 0.6316 0.9838 - 0.9448 0.5864 0.9871 -
Imani et al. [21] MCA 2015 0.9523 0.7524 0.9753 - 0.9590 0.7502 0.9745 -
Mapayi et al. [25] AT + GLCM 2015 0.9461 0.7632 0.9634 - 0.9510 0.7626 0.9657 -
Kumar et al. [57] MF+LoG+CLAHE 2016 0.9626 0.7006 - - 0.9637 0.7675 - -
Neto et al. [58] GS + MTHT 2017 - 0.7942 0.9631 - - 0.7695 0.9537 -
Khan et al. [59] GLP + MPT 2017 0.9600 0.7470 0.980 - 0.9510 0.7780 0.9660 -
Khan et al. [60] LD + HT 2018 0.9506 0.7696 0.9651 - 0.9513 0.7521 0.9812 -
Memari et al. [42] MF + FCM 2018 0.9610 0.7610 0.9810 - 0.9510 0.7820 0.9650 -

Supervised methods
Ricci et al. [28] LD + SVM 2007 0.9595 - - - 0.9646 - - -
Fraz et al. [61] GOA+MT+GFR+DT 2012 0.9480 0.7406 0.9807 0.8532 0.9534 0.7548 0.9763 0.7956
Wang et al. [44] CNN + RF 2015 0.9767 0.8173 0.9733 - 0.9813 0.8104 0.9791 -
Roychowdhury et al. [62] 8 HCFs + GMM 2015 0.9519 0.7249 0.9830 - 0.9515 0.7719 0.9726 -
Liskowski et al. [63] CNN 2016 0.9495 0.7763 0.9768 - 0.9566 0.7867 0.9754 -
Fu et al. [46] CNN + CRF 2016 0.9523 0.7603 - - 0.9585 0.7412 - -
Dasgupta et al. [47] FCN 2017 0.9533 0.7691 0.9801 0.8498 - - - -
Orlando et al. [41] CRF + SOSVM 2017 0.9454 0.7897 0.9684 0.7854 0.9571 0.7773 0.9789 0.7740
Oliveira et al. [43] SWT + FCN 2018 0.9821 0.8039 0.9804 - 0.9694 0.8315 0.9858 -
U-Net - 0.9594 0.7698 0.9798 0.8210 0.9669 0.7536 0.9827 0.8662
Ours coarse (from 1st part WUN) - 0.9625 0.7536 0.9737 0.8392 0.9681 0.7461 0.9825 0.8620
GLUE (w/o CLAHE) - 0.9605 0.8029 0.9746 0.8412 0.9623 0.8210 0.9802 0.8723
GLUE in LF - 0.9668 0.8170 0.9826 0.8619 0.9703 0.8102 0.9815 0.8717
Ours GLUE - 0.9692 0.8278 0.9861 0.8637 0.9740 0.8342 0.9916 0.8823

vessel segmentation. The details of the two datasets are listed in
Table 1.

The DRIVE1 dataset contains 20 training RGB images and
20 testing RGB images with the resolution of 768 × 584 pixels.
There are 7 images shown signs of mild early diabetic retinopathy
in this dataset.

The STARE2 dataset consists of 20 retinal fundus slides
captured by a TopCon TRV-50 fundus camera. Half of the dataset
comprises images of healthy subjects, and the rest contains the
pathological cases which make the segmentation more challeng-
ing.

For both the DRIVE and STARE dataset, there are two
groups of manual segmentation masks available annotated by two
independent human experts. The manual annotations of the first
expert were used as the ground truth for training and evaluation.

4.2 Evaluation Metrics
Accuracy is a widely used evaluation metric for the task of
binary segmentation, which computes the percentage of correctly
classified pixels in the whole image. Eq (4) is used for calculating
the Accuracy on test set,

Acc =
TP + TN

TP + FN + TN + FP
, (4)

1. https://www.isi.uu.nl/Research/Databases/DRIVE/
2. http://cecas.clemson.edu/ ahoover/stare/

where TP , TN , FP and FN represent the number of true
positive, true negatives, false positives and false negatives, respec-
tively.

Sensitivity (also referred as recall and true positive rate) is
another commonly used statistical measures of the performance
of binary segmentation task. It measures the proportion of actual
positives that are correctly classified as such. The equation goes
as

Sen =
TP

TP + FN
, (5)

Specificity (also called as true negative rate) measures the
proportion of actual negatives that are correctly identified as such.
The equation for computing the Specificity is

Spec =
TN

TN + FP
, (6)

Precision (also known as positive predictive value (PPV))
quantifies the ratio of pixels classified as retinal vessel that are
correctly identified. The equation goes as

Prec =
TP

TP + FP
, (7)

We apply these four metrics on each testing image and then
report the final average value on the testing set for comparison.
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4.3 Implementation

We implement our model in by using the Keras with TensorFlow
backend. The outputs of the first part concatenate with LCP
patches directly, and together with attention masks, will act as
input to the second part. The Adam optimizer is adopted to train
our model with an initial learning rate of 5∗10−5. The contracting
paths in both parts of our proposed model have the same structure
as VGG16 [33] (without fully connected layers). We then initialize
the weights of the first part (WUN) by using the pre-trained
weights on ImageNet provided by Keras.

The proposed model is trained and tested following the
pipeline discussed in Section 3 on a machine with Intel i7-7700K
CPU and an NVIDIA 1080Ti GPU. For each training image, we
randomly extracted 500 overlapped 64 ∗ 64 patches to construct
the training set. We adopt the widely used data augmentation
operations in each extracted patch, such as horizontal flip, width
shift range, etc. We first train the parameters of the first WUN for
30 epochs, and then train the second WRUN for another 30 epochs
by fixing the weights of the first part. The training batch size for
both models is 128.

4.4 Experiment Results

4.4.1 Quantitative Evaluation

In this section, we evaluate the segmentation performance of the
proposed GLUE model. The detailed evaluation protocols are as
follows.

• We implement an U-Net model on both datasets as the
baseline model. Both our proposed model and the baseline
U-Net model adopt the backbone of VGG-16, and initial-
ize with the weights pre-trained on ImageNet.

• To evaluate the influence of applying local and global
CLAHE pre-processing operation, we trained a GLUE
model using the original gray-scale retinal image as input.

• Following the idea of late fusion [64], [65], we design
a paralle two-path GLUE model in late fusion manner.
Instead of using a cascaded structure, the final conv
layer’s (conv9-3) output of both WUN and WRUN are
concatenated, followed by a conv layer to fuse the their
outputs.

• Furthermore, we compared with other representative state-
of-the-art methods, including unsupervised methods and
supervised methods.

The detailed evaluation metrics of our method and other repre-
sentative methods are listed in Table 2. From the table, we find that
our proposed GLUE model can significantly surpass the baseline
U-Net model on accuracy, sensitivity, specificity and precision
performance. The results of the proposed approach is close to
manual segmentations provided by the second human observer.
Comparing the GLUE with and without CLAHE operation, we
can find that using the CLAHE operation can significantly boost
the performance. Besides, unlike late fusion methods that fuse the
predictions from multiple features, we leverage the merit of two
different pre-processing operations and combine them by using a
cascaded refinement, and the results show that our cascaded struc-
ture has a considerable improvement over late fusion structure.
Also, the proposed model is in the leading position on each metric
compared to other methods, except that [43] and [18] have higher
accuracy on DRIVE and STARE, respectively.

Specifically, the comparison between the control groups in the
bottom four rows illustrates the effectiveness of our global and
local CLAHE operations, and the effectiveness of GLUE’s cascade
refinement structure. One thing we need to note is that many ap-
proaches (including ours) surpass the manual segmentation results
by the second observer on some metrics, that is because retinal
vessel segmentation is a hard task and the procedure of manual
segmentation can be considered highly subjective (examples can
be seen in Fig. 5).

4.4.2 Qualitative Segmentation Results
In Fig. 4, we plot some segmentation results produced by the
proposed model and the baseline U-Net model. Results show
that our model can cope well with the difficulties, including low
illumination, hard area of the optic disk, etc. Besides, results from
our proposed model show better vessel connectivity and small
vessel sensitivity than the ones from U-Net. For better displaying
the details of segmentation results, we also plot extracted patches’
segmentation results in zoom-in view in Fig. 5. The selected ex-
amples indicate that compared to U-Net, our model can accurately
segment tiny and indistinct vessels, and maintain the geometric
connection of retinal vessels. Specificity, as is indicated by red
arrows in No. 4© result of STARE, our model can overcome
the effects of lesions and abnormal areas in retinal images. As
mentioned above, retinal vessel segmentation is a challenging
task and can be considered highly subjective. Due to the low
contrast, the classification of many areas is ambiguous. In fact,
the misclassified area marked out by green arrows (in No. 2© 6©
in DRIVE and No. 5© in STARE, which regarded as false positive)
should actually be true positive. This shows that after a series of
effective processing and training, in some cases, our model has
a higher sensitivity for small and indistinguishable vessels than
manual segmentation.

4.4.3 Efficiency Analysis
At last, we compute the time cost of our model during the training
and testing. It takes about 91 and 65 minutes for training our
GLUE model on the DRIVE and the STARE dataset respectively.
For the testing phase, it only need 6.2 second for segmenting 20
retinal images (about 0.31s / image).

5 CONCLUSION

High-performance retinal vessel segmentation is a key step for
medical diagnosing, including chronic eye disease, cardiovascu-
lar disease and diabetic retinopathy, etc. While problems such
as poor illumination, missing of small vessels, complex vessel
geometry, make retinal vessel segmentation a challenging task.
Former learning-based approaches generally apply an image-level
pre-processing operation on whole retina image for segmentation
model learning. However, retina region’s appearance is a unitary
area, and pixels outside such area is of no use for segmentation.
Moreover, as introduced in Sec 3.1, applying CLAHE operation
globally and locally are complementary schemes with each other.
So, in this paper, we proposed the GLUE model for addressing
the challenging retinal vessel segmentation problem. Our model
contains a WUN for coarse segmentation and a WRUN for
segmentation refinement. By applying CLAHE operation globally
and locally, our model can benefit from both the GCP and
LCP patches’ information. And by adding attention scheme and
residual connection scheme, and applying cascaded refinement
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Fig. 5. Examples of extracted patches’ segmentation result from DRIVE dataset (listed in the left) and STARE dataset (listed in the right). The results
show that compared with U-Net, our model is able to find small blood vessels and maintain better vessel connectivity.

structure, our model can focus only on retinal region in each patch,
avoid false segmentation caused by irrelevant noisy background,
learn more discriminative features and have a better maintaining
of the retinal vessel tree structure.

We adopt accuracy, sensitivity, specificity, and precision for
measuring the accuracy of predicted segmentation results. We
evaluate our method on the widely used DRIVE and the STARE
benchmark dataset, and compare it with U-Net model as baseline
model, and many other representative methods. Experimental
results demonstrate that our model can achieve high-performance
segmentation results. Also, the performance comparison of GLUE
with GLUE’s coarse segmentation, GLUE in late fusion manner,
and GLUE without CLAHE operation shows the validity of our
structure. Detailed segmentation results in the zoom-in view show
that our model can not only accurately segment tiny and indistinct
vessels, but also maintain the geometric connection of retinal
vessels. Also, our model can deal well with abnormal and noisy
regions like lesion areas, edge areas and optic disk areas. Since
the procedure of manual segmentation can be considered highly
subjective, we expect larger datasets and more accurate manual
annotation for further improving the performance of our approach.
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[41] José Ignacio Orlando, Elena Prokofyeva, and Matthew B Blaschko. A
discriminatively trained fully connected conditional random field model
for blood vessel segmentation in fundus images. IEEE Transactions on
Biomedical Engineering, 64(1):16–27, 2017.

[42] Nogol Memari, Abd Rahman Ramli, M Iqbal Bin Saripan, Syamsiah
Mashohor, and Mehrdad Moghbel. Retinal blood vessel segmentation
by using matched filtering and fuzzy c-means clustering with integrated
level set method for diabetic retinopathy assessment. Journal of Medical
and Biological Engineering, pages 1–19, 2018.
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