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Abstract

Carotid artery lumen diameter (CALD) and carotid artery intima-media thick-

ness (CIMT) are essential factors for estimating the risk of many cardiovascular

diseases. The automatic measurement of them in ultrasound (US) images is an

efficient assisting diagnostic procedure. Despite the advances, existing meth-

ods still suffer the issue of low measuring accuracy and poor prediction stabil-

ity, mainly due to the following disadvantages: 1) ignore anatomical prior and

prone to give anatomically inaccurate estimation; 2) require carefully designed

post-processing, which may introduce more estimation errors; 3) rely on mas-

sive pixel-wise annotations during training; 4) can not estimate the uncertainty

of the predictions. In this study, we propose the Anatomical Prior-guided

ReInforcement Learning model (APRIL), which innovatively formulate the

measurement of CALD & CIMT as an RL problem and dynamically incorpo-

rate anatomical prior (AP) into the system through a novel reward. With the

guidance of AP, the designed keypoints in APRIL can avoid various anatomy

impossible mis-locations, and accurately measure the CALD & CIMT based

on their corresponding locations. Moreover, this formulation significantly re-
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duces human annotation effort by only using several keypoints and can help

to eliminate the extra post-processing steps. Further, we introduce an uncer-

tainty module for measuring the prediction variance, which can guide us to

adaptively rectify the estimation of those frames with considerable uncertainty.

Experiments on a challenging carotid US dataset show that APRIL can achieve

MAE (in pixel/mm) of 3.02 ± 2.23 / 0.18 ± 0.13 for CALD, and 0.96 ± 0.70 /

0.06 ± 0.04 for CIMT, which significantly surpass popular approaches that use

more annotations.

Keywords: CALD and CIMT Measurement, Anatomical Prior (AP),

Reinforcement Learning (RL).

1. Introduction

Carotid artery lumen diameter (CALD) and carotid artery intima-media

thickness (CIMT) have been reported as critical factors for measuring the risk of

many cardiovascular diseases, including atherosclerotic, myocardial infarction,

and stroke (Bauer et al., 2012; Mathai et al., 2019; O’Leary & Bots, 2010; Saba5

et al., 2019). Besides, CALD and CIMT are also used for evaluating the effect of

treatment or assessing the potential impact of certain factors (such as smoking)

on cardiovascular disease (Tell et al., 1994; Lonn et al., 2001). So far, the most

popular imaging technology for evaluating carotid artery diseases is B-mode

ultrasound (US) imaging, for its low costing, non-invasive, painless examination,10

and non-radiation (Barth, 2002; Stein et al., 2008). The common carotid artery

is close to the skin surface and is approximately parallel to the skin, making it

easy to be measured through US imaging. As illustrated in the typical carotid

artery ultrasound (CCA-US) (Figure 1(a)), the CALD refers to the distance

between the near-wall (NW) and the far-wall (FW). The CIMT is the distance15

between intima-lumen interface (LI) and the media-adventitia interface (MA)

on FW. At present, the CALD and CIMT in CCA-US images are manually

measured by well-trained cardiologists, which is extremely time-consuming and

tedious. Given the scarcity of our medical resources, it is with an urgent need
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Existing methods have low accuracy and stability because they: 
1) Fail to incorporate anatomical priors;
2) Need complex PP steps which introduce additional error;
3) Require pixel-wise annotation that is hard to obtain*;
4) Lack the ability to indicate estimation uncertainty.

(* refers to semantic segmentation methods)
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Figure 1: (a) The schematic diagram of CALD, CIMT, and other tissue structures in the

CCA-US image. (b) Several difficult samples show different kinds of challenges, including (b1)

artifact and ambiguous areas in the edge area, (b2) tiny intima-media interface structure, (b3)

diseased or noisy areas, (b4) irrelevant areas look similar to artery edges. GT and predictions

of some edges are marked with solid green and red lines, which are easily mis-located with

anatomically incorrect, and thus lead to low accuracy and stability. PP is short for post-

processing.

to build an automatic method for accurately measuring the CALD and CIMT.20

However, there are some difficulties during the measurement in CCA-US. 1)

Periodic carotid artery motion is often accompanied by artifacts, and will bring

many ambiguous areas; 2) The intima-media interfaces are close to each other

and have a fuzzy boundary, making it difficult to distinguish the two lines; 3)

There are many noisy or uncertain areas in CCA-US image, especially in the25

diseased areas; 4) Some tissues have similar appearances as the vessel wall in

CCA-US images, which are easily misidentified as NW or FW. We illustrated

these difficulties in the dashed boxes in Fig. 1(b1 ∼ b4).

During the past decades, several different types of approaches have been

proposed for this task by locating the edges of NW, LI, and MA, including the30

gradient-based edge detection methods (Pignoli & Longo, 1988; Liguori et al.,

2001; Stein et al., 2005; Golemati et al., 2007; Faita et al., 2008), the active

contour-based methods (Gutierrez et al., 2002; Cheng et al., 2002; Loizou et al.,

2007; Petroudi et al., 2012; Zhao et al., 2017b), the machine learning-based
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methods (Menchón-Lara et al., 2014; Menchón-Lara & Sancho-Gómez, 2015;35

Shin et al., 2016; Qian & Yang, 2018; Biswas et al., 2018; Xie et al., 2019; Zhou

et al., 2019; Zhao et al., 2020; Vila et al., 2020). Although these methods have

made significant advances, they still suffer the issue of low measuring accuracy

(measured by mean absolute error) and poor stability (measured by the magni-

tude of change in absolute error), mainly due to the following disadvantages: 1)40

These methods are mostly appearance-based, which do not consider the carotid

anatomical information, and prone to give anatomical incorrect estimation and

thus lower the accuracy and stability. 2) These methods are susceptible to

various noises, and a carefully designed post-processing step is needed to trans-

form the estimated edges or segmentation masks to CALD or CIMT, which may45

introduce more estimation errors. 3) Although modern deep learning-based seg-

mentation methods can improve the measurement accuracy to some extent, they

require a large amount of pixel-wise labeled data for training, which is usually

hard to obtain. 4) Due to the complexity of the data and the limitation of algo-

rithms, these methods do not have a suitable way to estimate the uncertainty of50

the predictions, especially for those results deviate significantly from the ground

truth (GT).

In the context of medical image analyzing, anatomical priors (AP) can pro-

vide more constraints in terms of the shape and locations. As shown in Fig. 1(a),

the carotid artery in CCA-US images shows several distinct anatomical priors,55

i.e., 1) NW, LI, and MA are straight-line-like edges arranged from top to bot-

tom; 2) LI and MA are close to each other and have similar directions. However,

these AP factors have not been incorporated into the previously mentioned

methods for improving accuracy. On the other hand, reinforcement learning

(RL) allows the agents to accomplish a complex sequential task through inter-60

actions with the environment. This sequential learning mechanism enables us

to integrate above AP factors into the reward as feedback during the step-wise

interaction between agent and environment. As such, we could formulate the

CALD & CIMT estimation task as an RL problem, in which a set of keypoints

represents the edges of NW, LI, and MA. The main goal is to perform a sequen-65
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tial movement to locate the keypoints into their correct positions guided by an

anatomical prior sensitive reward function.

In this study, we propose the Anatomical Prior-guided ReInforcement Learn-

ing model (APRIL) for CALD & CIMT measurement. We innovatively formu-

late the localization of NW, LI, and MA as a multi-agent RL problem, that each70

agent contains several keypoints for representing the edge, and the main goal is

to find the correct positions in the US frame. To incorporate the AP into the

learning procedure, we propose an anatomical prior sensitive reward function to

guide the multiple agents’ mutual movements. Besides, we further introduce an

extra uncertainty estimation module to adaptively rectify the estimation errors75

in those frames with more substantial prediction uncertainty. Finally, we con-

duct experiments on a challenging CCA-US dataset containing 4351 CCA-US

frames to evaluate our proposed method’s effectiveness.

To summarize, the main contributions of this study are as follows:

• We formulate the CALD & CIMT measurement as a multi-agent RL task80

and propose a novel AP guided reward function for the optimization.

Based on this formulation, we can avoid the anatomically inaccurate esti-

mations encountered in previous methods and achieve better performance.

• Our formulation significantly reduces human annotation effort by only

using several keypoints representing the carotid edges, and help to get rid85

of carefully designed post-processing steps and the resulting additional

errors.

• We introduce an extra uncertainty estimation module, which enables us

to adaptively rectify the estimation errors in those frames with higher

uncertainty. Experimental results on a challenging dataset demonstrated90

that our APRIL outperforms other representative comparing methods by

a large margin in both accuracy and stability.
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2. Related Work

During the past decades, researchers proposed various methods for tackling

the CALD or CIMT estimation tasks from the following three different cate-95

gories: gradient-based edge detection methods (Liguori et al., 2001; Stein et al.,

2005; Golemati et al., 2007; Faita et al., 2008), active contour-based meth-

ods (Gutierrez et al., 2002; Cheng et al., 2002; Loizou et al., 2007; Petroudi

et al., 2012), and machine learning-based methods (Menchón-Lara et al., 2014;

Menchón-Lara & Sancho-Gómez, 2015; Shin et al., 2016; Qian & Yang, 2018;100

Biswas et al., 2018; Zhou et al., 2019; Zhao et al., 2020; Vila et al., 2020). In

this section, we will briefly review these three different types of methods.

Gradient-based edge detection methods aim to locate edges represent-

ing carotid walls by modeling the intensity profile distribution, or computing

gradient of CCA-US images. Liguori et al. (2001) assumed that the artery is105

horizontally placed in the CCA-US images, and then detected the carotid wall

based on horizontal gradients of the intensity profile. Golemati et al. (2007)

applied a series of image processing techniques and the Hough transform to lo-

cate lines representing NW, LI, and MA edges. Faita et al. (2008) proposed an

improved gradient-based method by using a first-order absolute moment edge110

operator (FOAM), together with a heuristic search and thresholding process.

However, these methods are not robust enough to deal with the noisy CCA-US

images and need to adjust the hyper-parameters manually.

Active contour-based methods are iterative region-growing image seg-

mentation algorithms (Kass et al., 1988), which transform the task of carotid115

wall location into an energy optimization problem. The study by Loizou et al.

(2007) initialized the contour through a series of graphic operations, and adopted

the active contour method proposed by Williams & Shah (1992) for locating

carotid walls. Besides the internal energy and external energy in original active

contour, Gutierrez et al. (2002) further utilized the damping force introduced by120

Lobregt & Viergever (1995) to ensure the smoothness and stability during the

deformation process. Delsanto et al. (2007) proposed a combined approach of
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local intensity statistics and active contour to perform the CIMT measurement.

However, active contour-based methods heavily rely on initialization and the

corresponding energy functions. They also tend to be easily affected by image125

noises and find local optimal solutions.

Machine learning-based methods. Benefited from the large-scale la-

beled dataset and the rapid development of computation power, various ma-

chine learning methods have been proposed for the measurement of the CALD

or CIMT. Menchón-Lara et al. (2014) utilized a multi-layer perceptron to clas-130

sify the pixels inside the FW regions as either ’carotid wall boundary’ pixels

or not. Shin et al. (2016) combined the active contour model with a patch-

based CNN for locating the LI and MA edges in the CCA-US images. Biswas

et al. (2018) and Vila et al. (2020) adopt the fully connected network (FCN)

and DenseNet to segment the whole carotid image into different regions, and135

then perform the estimation of CALD or CIMT using a series of post-processing

(PP) steps. Such PP steps introduce complex operations including (1) largest

connected component extraction, (2) edge smoothing, (3) outliers removal, etc.,

which are with additional parameters and low robustness. These operations re-

quire careful design and lack the flexibility for different data, thus may introduce140

additional errors. Zhao et al. (2020) combined the CNN regression network with

a bidirectional optical flow model to resolve the inconsistencies between CCA-

US slices caused by artery motion, however this method required continuously

labeled frames. Although these recently emerged deep learning-based methods

can improve measurement accuracy, they still require a large amount of pixel-145

wise annotations for training their model and fail to incorporate anatomical

priors of CCA-US images.

3. Background

Reinforcement Learning (RL) enables the agent to learn complex tasks

by interacting with the environment by taking actions exploratively (for un-150

charted territory) and exploitative (for current knowledge). Among the key
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components of RL, the environment is the physical world in which the agent

operates. The state is the current situation of the agent. The reward is the

feedback that the agent interacts with the environment after taking an action.

The general workflow of RL is summarized as follows, where the agent interacts155

with the environment over a sequence of discrete time steps. At each step t,

the agent receives the representation of current state St, performs an action At,

and will get a reward Rt. Generally, RL problems are modeled and solved based

on Markov Decision Processes (MDP)(Kaelbling et al., 1996; Sutton & Barto,

2018). Many representative solutions have been proposed during the develop-160

ment of RL, such as Q-learning (Watkins & Dayan, 1992) and deep Q-network

(DQN) (Mnih et al., 2015).

Deep Q-network (DQN): Deep learning-based methods have achieved

remarkable success in various research areas, and deep neural networks (DNN)

have been integrated into the RL as a powerful function approximator. Mnih165

et al. (2015) proposed DQN, which approximates the action-value function by

Q(s, a;ω) ≈ Q(s, a), where ω represents the network parameters. The DQN

combines the merits of Q learning (Watkins & Dayan, 1992) and DNN for solv-

ing complex sequential learning tasks. Like Q-learning, the agents in DQN

interact with the environment by taking actions calculated by the DNN model170

and receiving the reward signal r. The corresponding main objective is to find

the optimal policy by maximizing the cumulative future rewards. The loss func-

tion of DQN goes as Eq 1.

LDQN (ω) = E[(r + γmax
a′

Qtarget(s
′, a′;ω−)−Qnet(s, a;ω))2] (1)

This function follows the form of mean squared error (MSE), where r, s, a and γ

are reward, state action, and discount factor, respectively. Q is the approximated175

action-value function. The s′ and a′ represent the next state and action. For

avoiding the instability caused by rapid policy changes, DQN usesQtarget(ω
−), a

temporarily fixed version of Qnet(ω). The Qtarget’s parameters ω− are updated

to be equal to Qnet periodically for every Ntarget steps. Furthermore, DQN
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Figure 2: The framework of the proposed APRIL model including 1) RL module for step-wise

agents learning; 2) AP guided reward for DQN learning; 3) Uncertainty-guided rectification.

KP and GT are short for keypoint and ground truth, respectively. ’Inno’ is short for innova-

tions, which are summarized in the bottom left corner.

introduces an experience replay buffer that stores transitions of (s, a, r, s′), and180

the buffer is sampled randomly to create the mini-batches for training. In this

way, the correlation of data is broken, and this is helpful for network convergence

and training stability. There are also some DQN variants to improve DQN from

different perspectives, such as double DQN (Van Hasselt et al., 2016), duel

DQN (Wang et al., 2016).185

RL, especially deep learning integrated RL, has been proved effective in

various medical image analysis tasks including segmentation (Sahba et al., 2006;

Wang et al., 2011; Man et al., 2019), landmark localization (Ghesu et al., 2017;

Alansary et al., 2019; Vlontzos et al., 2019), tissue detection (Luo et al., 2019;

Maicas et al., 2017; Ali et al., 2018), registration (Ma et al., 2017; Krebs et al.,190

2017; Liao et al., 2017).
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4. Anatomical Prior-guided Reinforcement Learning for CALD &

CIMT Measurement

In this study, we formulate the CALD and CIMT measurement task as

an Anatomical Prior-guided Reinforcement Learning (APRIL) problem, and195

utilize the deep Q-network (DQN) (Mnih et al., 2015) to perform the step-

wise learning procedure. In this section, we describe the overall framework of

APRIL in Sec. 4.1, and explain the main components of APRIL, including the

environment and feature encoder (Sec.4.2), the state representation (Sec.4.3),

the actions for locating keypoints (Sec.4.4), the anatomical prior-guided reward200

for DQN learning (Sec.4.5), and the uncertainty guided rectification module

(Sec.4.6).

4.1. The overall framework of APRIL

The overall framework of APRIL is illustrated in Fig. 2. The proposed

APRIL adopts three agents to control the five keypoints representing NW, LI,205

and MA edges, respectively. At each learning step, each agent in APRIL receives

the representations of the current state, and generates the action Q-list accord-

ingly through the encoder. Specifically, the action Q-list is a vector containing

the Q value of every action, where the Q value of each action is the basis for the

agent to choose the action. The reward is calculated by considering both the210

accuracy of predicted locations of keypoints, and the fitness correlated to AP

factors. Through the process of exploration and exploitation, the agents learn

to make sequential decisions to move the keypoints towards the target locations,

thereby the estimations of CALD and CIMT can be calculated by simple coordi-

nate subtraction. The uncertainty-guided rectification module further rectifies215

the predicted results for those frames with considerable uncertainty.

4.2. Environment and Feature Encoder

The environment is the carrier of RL operation, in which the agent takes

actions and gets the response, etc. In our APRIL’s implementation, the en-

vironment defines the composition of the state, the setting of action, the cal-220
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culation method of reward, and so on. In each learning step of APRIL, the

environment of current state contains current CCA-US image and positions of

all the keypoints. The feature encoder will extract features for representing the

current input, and the agents will choose the corresponding actions for current

step based on the extracted features. Therefore, the feature encoder will sig-225

nificantly influence the final measure accuracy, and it is crucial to design an

accurate and efficient feature encoder.

In this study, we adopt the SE-ResNext (SERN) module described in (Hu

et al., 2018) to construct the feature encoder, which combines the advantages

of SE-Net (Hu et al., 2018) and ResNeXT (Xie et al., 2017). The structure of230

such encoder is illustrated in the left part of Fig. 3, and the auxiliary path for

uncertainty-guided rectification in the right will be further described in Sec. 4.6.

In our feature encoder, we adopt four SERN blocks, one average pooling layer,

a dropout layer, and two fully-connected layers to compute the final feature

vector. Each SERN block consists of the structure of split-transform-merge,235

shortcut connection, and the squeeze-and-excitation operation. More details

of the SERN can be found in (Hu et al., 2018). Notice that it is compatible

with using other different CNN model as feature encoder. At each step, this

feature encoder takes the current CCA-US frames along with the corresponding

poly-line masks as the input (described in Sec. 4.3), and generates the predicted240

Q-value of each action for further strategy selection.

4.3. State representation in APRIL

In our implementation, the state at each step contains the current CCA-US

image and the current positions of all keypoints related to NW, LI, and MA

edges. Given that all the keypoints are evenly distributed horizontally and all245

the horizontal coordinates are fixed, the state only stores the vertical coordinates

of all keypoints, which goes as [a1, a2, , ..., a5], [b1, b2, , ..., b5], and [c1, c2, , ..., c5].

To better extract features from the current state, we generate poly-line masks

based on the position of all keypoints in the current step and concatenate this

mask with the input CCA-US image to form a state representation. An example250
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Figure 3: The SERN-based feature encoder adopted in APRIL (Sec.4.2). At the end of the

traditional encoder structure, we added an auxiliary path for uncertainty-guided rectification

(Sec.4.6). On the right side, we list the network structure of the primary and auxiliary path.

’Prm’ and ’Aux’ are short for primary and auxiliary, respectively.

of a state representation is depicted in the top left corner of Fig 2. Specifically,

for generating a poly-line mask, we connect the coordinates of all current key-

points with a line segment with a width of three pixels, and set the pixel value

of background and the poly-line area to 0 and 255, respectively.

4.4. Actions for locating keypoints255

In the proposed APRIL, we have three agents to locate the positions of NW,

LI, and MA, which each contains five keypoints. The horizontal coordinates

of these keypoints are fixed, and our goal is to locate the carotid artery wall

accurately by moving each keypoint up or down towards its correct position.

Then at each step, we define the action for each agent as moving one of five260

keypoints up or down at a unit length, or not moving any keypoints. Therefore,

we have an action space containing 2∗5+1 = 11 different actions for each agent.

4.5. Anatomical Prior-Guided Reward for DQN learning

In APRIL, the reward function calculates the benefit after moving keypoints

at each step, which consists of 1) the distance reduction Rgt towards the anno-265

tated GT; and 2) the increment of satisfaction Rap related to the anatomical
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ap .

The colored lines are fitted lines from agents of NW, LI, and MA.

prior (Fig. 4), defined as

R = Rgt + λ(

Rap︷ ︸︸ ︷
Rline

ap +Rangle
ap ), (2)

where λ is a hyper-parameter weighting influence of AP and set to 0.2.

The first term Rgt computes the distance reduction of all keypoints after

each agent’s action at a time step, which goes as:270

Rgt =
N∑

i=1

∣∣yipred − ygt
∣∣−
∣∣yipred − yigt

∣∣, (3)

where N is the number of keypoints, yigt, y
i
pred and yipred represent the ith key-

point’s y-coordinate of GT, before the action, and after the action, respectively.

For the Rap, we consider a straight line fitness penalty Rline
ap , and a paral-

lel fitness gain Rangle
ap between the estimated LI and MA edges (Fig.4). After

moving one keypoint, if it has a negative influence on the straightness of its275

corresponding line, we will assign a penalty to Rline
ap . The penalty equals to the

distance between the moved keypoint and fitted line of other keypoints repre-

senting the current edge, and such penalty implicitly guarantees the smoothness

between different keypoints. Moreover, since the LI and MA have similar di-

rections, we can compute the angle difference reduction between them based on280

the slope of their corresponding fitting line after an action. Given the keypoints,

we firstly estimate the slopes and intercepts of the fitting straight line related

to NW, LI, and MA, by k, b = arg mink,b

∑n
i=1 (kxi + b− yi)2. After moving a
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keypoint i, we compute the Rline
ap as using the negative distance of keypoint i

to its corresponding fitting line. If the action is taken by the agents of LI and285

MA, then we compute the Rangle
ap by:

Rangle
ap =

∣∣θ(kLI)− θ(kMA)
∣∣−
∣∣θ(kLI )− θ(kMA )

∣∣ (4)

where the kLI , kMA, kLI , kMA represent the slope of the fitting line of LI

and MA before and after taking an action, and θ is the arc-tangent function for

computing correponding angles.

In this reward function, we consider the relative position between the key-290

points & GTs, and the degree of satisfaction with AP factors. Note that these

constraints are not strict restrictions, and slight violations are allowed (e.g.,

curve and pathology areas in Fig. 6 {B, C, D, E}). The three designed agents

interact with each other and select the appropriate actions for the related key-

points. Notice that, if any keypoint reaches the edge of the image, we directly295

give a large negative value as a reward (-1000 in our implementation), and ter-

minate this episode of exploration. Besides, as mentioned in the introduction

that NW, LI, and MA are arranged from top to bottom, and LI and MA are

close to each other, we directly incorporate this prior information by initializing

the keypoints into appropriate positions.300

4.6. Uncertainty guided rectification module

When the carotid artery is in the state of contraction/relaxation changes,

there will be much noise in the CCA-US frame. It will blur the edge of vessel

walls and cause inaccurate predictions of our model. Estimating the uncertainty

of neural network predictions is an effective way for dealing with noise in data,305

and quantifying the reliability of predictions, especially for life-critical appli-

cations such as medical image analysis and autonomous driving (Eaton-Rosen

et al., 2018; Postels et al., 2019). Therefore, we introduce an uncertainty guided

rectification module to rectify the results of those noisy frames in the testing

stage. Explicitly, we assign the predicted values of the frames with high un-310
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frames from 
the same case 

APRIL’s 
testing process

Prm Q-lists

Aux Q-lists

Discosfrom last encoder

predicted frames
ranked by Discos

seq pred rectify GT

19 (79.2, 8.6) (80.5, 8.0) (81.8, 7.4)

11 (77.4, 8.2) (80.5, 8.0) (80.2, 7.2)

14 (79.6, 8.4) -- (80.8, 7.4)
… … … …

25 (80.6, 8.0) -- (81.2, 7.6) 

27 (80.8, 7.8) -- (82.0, 7.4) 

results from one case

rectify: assign the results of top-ranked frames
to the average values of the remaining frames

Figure 5: The process of uncertainty driven rectification for a group of frames from one case.

Prm and Aux Q-lists are the outputs of primary and auxiliary paths of APRIL’s encoder, as

is indicated in Fig. 3. On the right side, the red borders indicate the frames that need to be

further rectified after uncertainty ranking. Specifically, we rank the calculated cosine distance

of the two predictors and assign the results of the top-ranked frames to the average values of

CALD and CIMT of the remaining frames.

certainty to the average values of the remaining frames in the same case (as

illustrated in Fig. 5).

Inspired by the work proposed by Zheng & Yang (2020), we formulate the

uncertainty in this task as the prediction variance. Specifically, on the feature

encoder introduced in Sec 4.2, we add an auxiliary predictor for the same task315

as the primary predictor. Both of them predict the Q-values for each action.

After the four SERN blocks of our feature encoder, the network is divided

into two branches: the primary branch, and the auxiliary branch with a slightly

different structure (Fig. 3). By leveraging the discrepancy of prediction between

the primary and the auxiliary branches, we get an estimation of the degree of320

uncertainty. In detail, we calculate the cosine distance between the outputs

from the primary branch and auxiliary branch by

Distcos = 1− cos(θ) = 1− A ·B
‖A‖‖B‖ (5)

where A and B represent the estimation of the primary and the auxiliary

branches, respectively.

After getting the sequential predictions of a patient, we set a thresholding ra-325

tio αunc to pick out those frames with a higher degree of uncertainty to perform

a rectification. Since frames with high uncertainty often appear in the vasomo-
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tion stage, it is reasonable to assign their results as the average of the remaining

frames with higher confidence. Therefore, we directly assign their CALD and

CIMT as the average values of the remaining (1 − αunc) frames with higher330

confidence. A schematic diagram of this process is shown in Fig. 5. In practice,

we also can only leverage the frames with higher confidence for the final CALD

and CIMT measurement. Our model can correct outliers adaptively according

to the actual characteristics of different cases and the uncertainty predictions,

instead of setting fixed thresholding for all cases or requiring constant manual335

adjustment of the thresholding value as in the existing approaches.

5. Experimental Setup

5.1. Dataset

We evaluate the proposed APRIL method on a challenging dataset, which

contains 4351 annotated CCA-US frames from 95 patients collected at a medical340

center by a MINDRAY Resona 7. There are 54 male patients and 41 female

patients with a mean age of 33 ± 9.6 years old. The dataset contains 187 CCA-

US sequences from both left and right carotid arteries of 92 patients, and only

left or right of the rest three patients. Each sequence has 175 frames collected

in a longitudinal B-mode at a frame time of 28.6 ms. The spatial resolution is345

0.060 mm/pixel. For measuring the changes of CALD and CIMT during carotid

vasomotion, we randomly annotated 20 ∼ 27 frames at the interval of 1 ∼ 4

frames for each sequence. The annotation procedure is accomplished by anno-

tating the NW, LI, and FW in those selected frames, and two carotid physicians

with more than 10-year experiences help to double-check the annotations.350

For the training and testing, we randomly select 137 sequences from 69 pa-

tients (3282 frames) for training, 17 sequences from 9 patients (404 frames)

for validation, and 33 sequences from 17 patients (665 frames) for testing.

All frames are uniformly cropped to 256 ∗ 256 to unify with clinical practice

(Menchón-Lara & Sancho-Gómez, 2015; Golemati et al., 2007; Loizou et al.,355

2007; Biswas et al., 2018) and improve computing efficiency. Note that this
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process is accomplished by our self-designed labeling tool, and for all frames of

the same case, we simply locate a 256 ∗ 256 box once to complete ROI location

process.

5.2. Implementation details360

We implement our proposed APRIL by using the PyTorch toolbox with the

OpenAI Gym platform and train the model in a device with Intel E5-2650 CPU

and 4 * NVIDIA P100 Pascal GPU. During the training phase, we adopt an

ε-greedy exploration strategy for choosing the actions of agents. Specifically,

the ε is initialized to 0.6 and is increased by 0.1 for every 25 epochs till 0.9. The365

experience replay buffer capacity is 600, and the discount factor (γ in Eq. 1)

is 0.9. We set Ntarget to 50, where Ntarget is the update frequency of Qtarget

in Eq.1. In the training stage, for all the three encoders, we adopt the weights

pre-trained with ImageNet and train them in a separate manner simultaneously.

We use MSE loss for measuring the distance between action Q-lists predicted370

by Qtarget and Qnet in Eq. 1, and the MSE loss goes as

l(x, y) = {l1, . . . , lN}T , ln =
1

M

M∑

m=1

(xmn − ymn )
2

(6)

where N is the batch size, M is the length of the action Q-list. For the nth

batch, xmn is the mth Q value in the action Q-list predicted by Qnet, and ymn is

the mth action Q-list predicted by Qtarget. For the optimization, we use Adam

optimizer with an initial learning rate of 1e− 4 and a batch size of 32.375

After computing the average statistical position of the NW, LI, and MA in

the training set, we initialize their corresponding five keypoints evenly along

the horizontal axis at the vertical coordinates of 80, 180, 190, respectively. By

using this initialization strategy, we can get the benefits of ensuring all keypoints

reach accurate positions in as few steps as possible, and utilizing the relative380

position prior information of the NW, LI, and MA.

During the training phase, we treat the process of agents perform a series of

actions in one CCA-US frame as an episode, and limit the maximum number
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of actions per episode to 180. In the testing phase, the agents follow the policy

learned by APRIL, which chooses the action with the highest Q-value at each385

step. If all three agents select the same keypoints and oscillate in the same

positions four times, we considered that a suitable edge had been found and

terminated. Otherwise, our max step per episode is 120 in the testing phase,

which takes around 4.7s for each CCA-US frame. Specifically, the setting of all

DQN-specific hyper-parameters, including ε for ε-greedy exploration strategy390

and γ for discount factor in Eq. 1, refers to (Alansary et al., 2019; Man et al.,

2019). While other task-specific parameters, including the line-width of the

poly-line masks and the number of keypoints, are obtained based on the results

on validating set.

6. Experimental result and analysis395

We evaluate the CALD and CIMT measurement accuracy by computing the

mean absolute error (MAE) between the predicted values with the ground truth

(GT) of all testing frames, which goes as:

MAE =
1

N

N∑

n=1

|pn − gn| (7)

where N is the number of testing frames, and pn and gn denote the prediction

and GT of CALD/CIMT of the nth frame, respectively. In the following, we

compare the proposed APRIL with other representative methods in Sec.6.1, and

perform an ablation study to validate the effectiveness of our model design and

components in Sec.6.2.400

18

                  



Table 1: MAEs and standard deviations of CALD & CIMT from APRIL and other represen-

tative methods. PP is short for post-processing.

method year description
CALD CIMT

in pixel in mm in pixel in mm

Golemati et al. (2007) 2007
Edge detect &

Hough transform
9.71 ± 5.66 0.58 ± 0.34 2.06 ± 1.79 0.12 ± 0.11

Loizou et al. (2007) 2007
Active contour

(snakes)
13.67 ± 7.81 0.82 ± 0.47 2.68 ± 2.33 0.16 ± 0.14

Menchón-Lara et al.

(2014)
2014

CNN-based

edge detect + PP
7.08 ± 5.21 0.42 ± 0.31 1.61 ± 1.33 0.10 ± 0.08

Shin et al. (2016) 2016
CNN-based edge

detect + snakes
7.79 ± 4.15 0.47 ± 0.25 1.57 ± 1.79 0.09 ± 0.11

Vila et al. (2020) 2020
CNN-based

segment + PP
6.72 ± 4.96 0.40 ± 0.30 1.54 ± 1.25 0.09 ± 0.08

U-Net

(Ronneberger et al., 2015)

2015
U-Net +

Vila et al. (2020)’s PP
6.98 ± 5.28 0.42 ± 0.32 1.64 ± 1.83 1.10 ± 0.11

DeepLabv3+

(Chen et al., 2018)

2018
DeepLabv3+

+Vila et al. (2020)’s PP
6.56 ± 4.81 0.39 ± 0.29 1.52 ± 1.60 0.09 ± 0.10

PSPNet

(Zhao et al., 2017a)

2017
PSPNet +

Vila et al. (2020)’s PP
6.85 ± 5.16 0.41 ± 0.31 1.47 ± 1.62 0.09 ± 0.10

APRIL - proposed method 3.02 ± 2.23 0.18 ± 0.13 0.96 ± 0.70 0.06 ± 0.04

6.1. Comparison with other representative methods

We compare the proposed APRIL with the three categories of CALD/CIMT

estimation methods described in Sec. 2, including gradient-based edge detection

methods (Golemati et al., 2007), active contour-based methods (Loizou et al.,

2007), machine learning-based methods (Menchón-Lara et al., 2014; Shin et al.,405

2016; Vila et al., 2020). All these comparing methods are reproduced on our

proposed dataset according to the parameters described in the original litera-

ture. We summarize the results of the proposed APRIL and other represen-

tative comparing approaches in Table 1, and show the visualization results of

some challenging cases in Fig. 6.410

Gradient-based edge detection methods: As a gradient-based edge de-

tection method, Golemati et al. (2007) consists of ROI extraction, morphologi-
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original
Golemati [13]

(Edge detection-based)
Loizou[15]

(Snakes-based)
Vila[18]

(DL-based) APRIL GT

(97.0,  8.6)(98.2,  7.6)(96.7,  5.8)(111.8,  9.9)(107.5,  5.7)(CALD,  CIMT):<C1> <C2> <C3> <C4> <C5> <C6>

(84.8,  8.2)(85.8,  8.8)(87.3,  6.9)(97.5,  13.2)(118.5,  9.0)(CALD,  CIMT):<B1> <B2> <B3> <B4> <B5> <B6>

(97.8,  6.8)(CALD,  CIMT): (122.3,  5.7) (98.2,  7.2)(102.9,  8.6) (104.1,  6.9)<A1> <A2> <A3> <A4> <A5> <A6>

(99.2,  6.4)(95.4,  5.6)(94.6,  5.1)(110.5,  17.4)(106.6,  7.0)(CALD,  CIMT):<D1> <D2> <D3> <D4> <D5> <D6>

(107.2,  6.2)(105.1,  5.9)(99.7,  8.1)(110.1,  5.4)(112.3,  4.0)(CALD,  CIMT):<E1> <E2> <E3> <E4> <E5> <E6>

R1 采用

(93.2,  7.4)(94.3,  7.2)(95.7,  8.9)(97.7,  9.8)(98.5,  7.8)(CALD,  CIMT):<F1> <F2> <F3> <F4> <F5> <F6>(96.6,  7.8)

(102.4,  5.8)
UNC-REC

UNC-REC

A

B

C

D

E

F

Figure 6: The visualization results of the representative models and the proposed APRIL. We

mark some challenging areas of each picture with colored dashed boxes as Fig. 1, Red: artifact

and ambiguous areas in the edge area, Blue: tiny intima-media interface structure, Yellow:

diseased or noisy areas, Green: irrelevant areas look similar to artery edges. E1 and F1 are

picked out for uncertainty guided rectification (marked with red arrows), where the detailed

rectification process is illustrated in Fig. 5.

cal operations, edge detection, and Hough transform, which need to be carefully

tuned for a specific frame. Besides, as shown in Fig. 6 [C2, E2], since the re-

sult of (Golemati et al., 2007) is calculated based on the distance between the415

straight lines predicted by Hough transform, the accuracy of this method will

be further reduced when the direction of the carotid artery has a considerable
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（1） （2）

Figure 7: Boxplots of CALD & CIMT’s MAEs (in pixel) for comparative approaches.

deflection.

In practice, the predictions of this kind of approaches are not ideal and

fluctuate significantly among the time series, since the difference between CCA-420

US images is relatively significant and with much noise. On the other hand,

these methods are based on low-level features such as edges and gradients and

do not incorporate AP factors. They are less robust to the CCA-US image

diversity and are prone to produce anatomical incorrect edge predictions, such

as crossed LI & MA edges (Fig. 6 [C2, D2, E2]).425

Active contour-based methods: Similar to gradient-based detection meth-

ods, the representative active contour-based method Loizou et al. (2007) also

need a series of carefully tuned operations such as cropping and despeckle to

initialize snake contour. As shown in the third column of Figure 6, the esti-

mated contours can adequately fit the edges’ curvature when the carotid wall430

is unambiguous. However, they still suffer from low accuracy and fluctuation,

mainly due to 1) rely on the proper initialization of snakes, 2) lack the con-

straint from AP factors, 3) the snakes tend to be biased or get stuck in local

minima. Therefore, active contour-based methods tend to generate prediction

errors with a significant anatomical violation, such as abnormal bends due to435

the lesion or abnormality on carotid walls (Fig. 6 [B3]) and abnormal bends due

to misidentification of unrelated tissues (Fig. 6 [A3, C3]).
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Deep learning-based methods: We also compare APRIL with deep

learning-based methods, including Menchón-Lara et al. (2014) and Shin et al.

(2016) that directly locate carotid walls, and Vila et al. (2020) that accom-440

plish the task through multi-class semantic segmentation. For fair comparisons,

we changed the backbone networks of these methods to the same SE-ResNeXt

(SERN) as our APRIL (U-shaped model with SERN as encoder for semantic seg-

mentation tasks). The comparing results in Table. 1 indicated that the pipeline

and the operations adopted in Vila et al. (2020) has better performance than445

Shin et al. (2016) and Menchón-Lara et al. (2014). Thus, for more comparison,

we switch the segmentation model in Vila et al. (2020) to other representative

models that achieved state-of-the-art performance in medical imaging tasks,

including U-Net (Ronneberger et al., 2015), DeepLabv3+ (Chen et al., 2018),

and PSPNet (Zhao et al., 2017a). The results listed in Table. 1 suggest that450

when using the same pipeline and post-processing steps, the measurement re-

sults between different backbones do not have much difference. Among them,

PSPNet, SERN, and DeepLabv3+ perform better, and U-Net is slightly infe-

rior. Although DL-based methods achieved significant improvement, they still

suffer the issues of low measuring accuracy and poor stability due to (a) the in-455

ability to incorporate anatomical priors, (b) the additional errors caused by the

post-processing steps, which are with complex operations and hyper-parameters,

and lacking the flexibility to remove outliers as our rectification module (see

Sec. 4.6) does. The main prediction error of these DL-based methods comes

from the complex post-processing performed on the predicted segmentation460

masks, which also requires manual setting of a series of complex operations

and hyper-parameters.

In Fig. 7, we show the boxplots for APRIL and the comparing methods.

Boxplot is a quartiles-based graphical tool for visualization of data distribution

and to point out possible outliers. From this figure, we can intuitively find that465

our method has better accuracy and stability than the other three categories of

methods, in which more errors and outliers are introduced. Besides, the pre-

deep learning methods, especially snakes-based methods, have larger prediction
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Table 2: The MAE results summary of ablation study on the key components of APRIL. Rect

stands for uncertainty-guided rectification module.

AP factors
Rect

CALD CIMT

Rline
ap Rangle

ap in pixel in mm in pixel in mm

APRIL

3.67 ± 2.65 0.22 ± 0.16 1.20 ± 0.87 0.07 ± 0.05

X 3.38 ± 2.44 0.20 ± 0.15 1.14 ± 0.82 0.07 ± 0.05

X 3.53 ± 2.52 0.21 ± 0.15 1.11 ± 0.83 0.07 ± 0.05

X X 3.19 ± 2.33 0.19 ± 0.14 1.07 ± 0.80 0.06 ± 0.05

X X X 3.02 ± 2.23 0.18 ± 0.13 0.96 ± 0.70 0.06 ± 0.04

errors and higher instability, due to more parameters that need to be manually

tuned. Deep learning-based methods can improve the prediction results to some470

extent, but there is still a considerable gap compared with APRIL.

6.2. Ablation Study

We perform an ablation study on the APRIL model to explore and validate

our design choice. Specifically, we evaluate the effectiveness of the key compo-

nents in APRIL in Sec. 6.2.1, and validate the performances of different learning475

schemes in Sec. 6.2.2.

6.2.1. Ablation study on the key components of APRIL

We evaluate the influence of the key components in APRIL, including:

(1) The effectiveness of AP factors: We conduct evaluation for the AP

factors from the following aspects: (a) Removing all the AP factors and the480

rectification module (a naive version of APRIL); (b) Adding only Rline
ap to (a),

which considers the straightness constraint of the three edges; (c) Adding only

Rangle
ap to (a), which considers the parallel relationship between LI and MA;

(d) Adopting all the AP factors. The comparing results of these aspects are

summarized in Table 2. Comparing with the naive version of APRIL, we can485

find that the Rline
ap has a positive effect on the locating of all three edges, and

Rline
ap plays a more significant role when locating LI and MA related to CIMT.

By adopting all the AP factors, the performance is further improved. We also
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(109.4,  9.8)(CALD,  CIMT): (104.4,  11.2) (110.8,  10.4)(112.6,  7.2)<G1> <G3> <G4> <G5> <G6>

(101.4,  7.4)(CALD,  CIMT): (103.2,  7.8) (100.4,  6.8)(99.0,  9.6)<H1> <H3> <H4> <H5> <H6>

(99.4,  8.0)(CALD,  CIMT): (103.6,  8.4) (100.6,  7.2)(102.2,  9.4)<K1> <K3> <K4> <K5> <K6>

(105.4,  10.6)<G2>

no prior

(105.4,  4.6)<H2>

(107.2,  5.0)<K2>

G

H

K

Figure 8: The visualization results of APRIL’s ablation models with/without different AP fac-

tors. We mark some challenging areas of each picture with colored dashed boxes as Fig. 1, Red:

artifact and ambiguous areas in the edge area, Blue: tiny intima-media interface structure,

Yellow: diseased or noisy areas, Green: irrelevant areas look similar to artery edges.

illustrate the visualization results of APRIL with/without different AP factors

in Fig. 8. The results in the second column demonstrate that when without any490

AP factors, APRIL sometimes gives anatomical inaccurate predictions. The

introduction of AP factors greatly eliminate this situation, which demonstrates

the mutual benefits of the two AP factors.

(2) The impact of uncertainty-guided rectification: We further imple-

ment APRIL with the uncertainty-guided rectification, and the accuracy of both495

CALD and CIMT are improved as reported in Table 2. The detailed rectifica-

tion process is illustrated in Fig. 5. Specifically, in Fig. 6, frames E and F

are under the state of vasomotion/pathology, and are selected for rectification

by APRIL due to the higher predicted uncertainty. After such a rectification

process, both frames give CALD&CIMT predictions with higher accuracy.500

We conduct further evaluation of the hyper-parameter αunc in the rectification

module. Specifically, as introduced in Sec. 4.6, for the same patients’ frame se-

quence, we rank them according to the calculated Distcos from high to low, and

calculate the MAE of CALD & CIMT of all frames in every 10% interval. The
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(a) MAE performance of frames with varying degrees of uncertainty

CALD

CIMT

(b) MAE performance after rectifying on frames of different proportions

CALD

CIMT

% for rectifying

Figure 9: Schematic diagram of uncertainty guided rectification results, including: (a) MAE

performance of frames with varying degrees of uncertainty in every 10% interval, and (b) MAE

performance after uncertainty guided rectification on different proportions of frames.

results are shown in Fig. 9 (a). Then we pick out the frames with the degree505

of uncertainty ranked in the top αunc from the same cases, and assign their

CALD and CIMT to the average values of the remaining (1 − αunc) frames of

the same patient (illustrated in Fig. 6 [E, F]). The results indicated in Fig. 9(b)

demonstrate that when the αunc is 40%, we got the best result.

6.2.2. Ablation study on different learning schemes510

We also evaluate the performances of different learning schemes for the same

task, including: (1) Changing the number of agents in APRIL from three to one,

(2) Changing the prediction pipeline by directly estimating the position of all

keypoints or directly predict the value of CALD/CIMT.

(1) Single agent vs Three agents: We implement the proposed APRIL in515

a single-agent way. Unlike the design indicated in Fig. 2, we use only a single

agent to control all the 15 keypoints representing the edges of NW, LI, and

MA. Besides, to further demonstrate the effectiveness of our AP factors, we

implement APRIL(1 agent) both with & without AP. Under this setting, the

action space becomes 15 ∗ 2 + 1 = 31. At each step, the model moves only one520

keypoint. In such a setting, the model controls more keypoints at the same time,

and requires larger max steps per episode (set as 250 in our implementation),
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RIGHT  R1

Figure 10: Boxplots of CALD & CIMT’s MAEs (in pixel) for ablation methods.

making the testing time of one frame more than 10s. The prediction results

in Table. 3 show a non-negligible reduction when implementing APRIL in only

one agent manner (CALD: 3.02 to 4.06, CIMT: 0.96 to 1.36), and discarding525

AP factors further degrade the results.

Table 3: MAEs and standard deviations of CALD and CIMT from APRIL, and the ablation

models. RECT is short for uncertainty-guided rectification module.

schemes description
CALD CIMT

in pixel in mm in pixel in mm

APRIL

(1 agent, w/o AP)

only 1 agent to control

all points (w/o AP factors)
4.39 ± 3.07 0.26 ± 0.18 1.44 ± 1.12 0.09 ± 0.07

APRIL

(1 agent, w/ AP)

use only 1 agent to control

all points (with AP factors)
4.06 ± 2.73 0.24 ± 0.16 1.36 ± 0.93 0.08 ± 0.06

SERN (15 points)
use SERN to directly

regress to 15 keypoints
3.93 ± 2.57 0.24 ± 0.15 1.30 ± 0.96 0.08 ± 0.06

SERN (2 values)
use SERN to directly

regress to 2 values
4.15 ± 2.68 0.25 ± 0.16 1.36 ± 1.11 0.08 ± 0.07

APRIL
the proposed APRIL with

all AP factors and PP
3.02 ± 2.23 0.18 ± 0.13 0.96 ± 0.70 0.06 ± 0.04

(2) Verifying the effect of direct estimation: We adopt the same SE-

ResNeXt as backbone encoder to directly regress to (a) the ordinance of 15

keypoints (SERN(15 points)), (b) the final value of CALD and CIMT (SERN(2 val-
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ues)). These two methods have similar results, as indicated in Table. 3. However,530

direct prediction of CALD and CIMT values lacks intermediate results, so the

accuracy of prediction cannot be verified conveniently in practical application.

Comparing to APRIL, such approaches lack the limitation of prior knowledge,

and are prone to produce anatomical-incorrect results. However, similar to our

APRIL, such methods do not require complicated post-processing on the seg-535

mentation masks or edge detection results, that can avoid the additional errors

and instability, compared to the approaches listed in Table. 1.

We further show boxplots of MAEs from different ablation models in Fig. 10.

Basically, these models have better performance comparing with methods in

Sec. 6.1, where the two direct regression methods perform slightly worse. In ad-540

dition, the introduction of uncertainty-guided rectification can effectively reduce

outliers, thereby reducing the overall error.

7. Conclusion

In this study, we formulate the CALD & CIMT estimation task as an RL

problem and use DQN to solve it. In such setting, the estimation task is solved545

by learning three agents, where each agent controls five keypoints to locate

the NW, LI, and MA edges, respectively. We dynamically incorporate the AP

factors into the step-wise DQN learning procedure through an AP sensitive

reward function, which guide the multiple agents’ mutual movements. Via our

innovative modeling, CALD and CIMT can be accurately measured by finding550

the exact locations of multiple keypoints with fewer annotations. We further

optimize the prediction results by the uncertainty-guided rectification operation

based on prediction variance on Q-lists. Experiments on a challenging CCA-US

dataset prove the effectiveness and superiority of our method in terms of the

measurement accuracy and stability. Our future work aims to incorporate the555

periodicity of the carotid vasomotion into the calculation process, and explore

the anatomical relationships between adjacent frames.
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E., & Igual, L. (2020). Semantic segmentation with densenets for carotid725

artery ultrasound plaque segmentation and cimt estimation. Artificial Intel-

ligence in Medicine, 103 , 101784.

Vlontzos, A., Alansary, A., Kamnitsas, K., Rueckert, D., & Kainz, B. (2019).

Multiple landmark detection using multi-agent reinforcement learning. In In-

ternational Conference on Medical Image Computing and Computer-Assisted730

Intervention (pp. 262–270). Springer.

Wang, L., Merrifield, R., & Yang, G.-Z. (2011). Reinforcement learning for

context aware segmentation. In International Conference on Medical Image

Computing and Computer-Assisted Intervention (pp. 627–634). Springer.

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., & Freitas, N. (2016).735

Dueling network architectures for deep reinforcement learning. In Interna-

tional Conference on Machine Learning (pp. 1995–2003).

Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine learning , 8 , 279–292.

Williams, D. J., & Shah, M. (1992). A fast algorithm for active contours and

curvature estimation. CVGIP: Image understanding , 55 , 14–26.740

Xie, M., Li, Y., Xue, Y., Shafritz, R., Rahimi, S. A., Ady, J. W., & Roshan,

U. W. (2019). Vessel lumen segmentation in internal carotid artery ultra-

sounds with deep convolutional neural networks. In 2019 IEEE International

Conference on Bioinformatics and Biomedicine (BIBM) (pp. 2393–2398).

IEEE.745

Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated resid-

ual transformations for deep neural networks. In Proceedings of the IEEE

conference on computer vision and pattern recognition (pp. 1492–1500).

34

                  



Zhao, C., Feng, C., Li, D., & Li, S. (2020). Of-msrn: Optical flow-auxiliary

multi-task regression network for direct quantitative measurement, segmen-750

tation and motion estimation. In Proceedings of the AAAI Conference on

Artificial Intelligence (pp. 1218–1225). volume 34.

Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017a). Pyramid scene pars-

ing network. In Proceedings of the IEEE conference on computer vision and

pattern recognition (pp. 2881–2890).755

Zhao, S., Gao, Z., Zhang, H., Xie, Y., Luo, J., Ghista, D., Wei, Z., Bi, X., Xiong,

H., Xu, C. et al. (2017b). Robust segmentation of intima–media borders with

different morphologies and dynamics during the cardiac cycle. IEEE journal

of biomedical and health informatics, 22 , 1571–1582.

Zheng, Z., & Yang, Y. (2020). Rectifying pseudo label learning via uncer-760

tainty estimation for domain adaptive semantic segmentation. arXiv preprint

arXiv:2003.03773 , .

Zhou, Z., Shin, J., Feng, R., Hurst, R. T., Kendall, C. B., & Liang, J. (2019). In-

tegrating active learning and transfer learning for carotid intima-media thick-

ness video interpretation. Journal of digital imaging , 32 , 290–299.765

35

                  


