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Abstract—Few-shot learning can potentially learn the target
knowledge in extremely few data regimes. Existing few-shot
medical image segmentation methods fail to consider the global
anatomy correlation between the support and query sets. They
generally adopt a weak one-way information transmission that
can not fully explore the knowledge to segment query data. To ad-
dress this problem, we propose a novel Symmetrical Supervision
network based on traditional two-branch methods. We raise two
main contributions: (1) The Symmetrical Supervision Mechanism
is leveraged to strengthen the supervision of network training;
(2) A transformer-based Global Feature Alignment module is
introduced to increase the global consistency between the two
branches. Experimental results on two challenging datasets (ab-
dominal segmentation dataset CHAOS and cardiac segmentation
dataset MS-CMRSeg) show a remarkable performance compared
to other comparing methods.

Index Terms—few-shot segmentation, Symmetrical Supervi-
sion, Global Feature Alignment.

I. INTRODUCTION

Accurate medical image segmentation plays an essential
role in many clinical applications. Recently, deep learning-
based segmentation methods [1], [2] have achieved superior
performance in medical image segmentation tasks. However,
deep neural networks need a large amount of pixel-wise
labeled data for training, which is hard to obtain. Moreover,
the trained networks generally have a weak generalization
performance. Few-shot learning has been proposed to address
these challenges in medical image segmentation, which learns
a generalization model that can use just a few labeled examples
to segment the target organs.

Existing few-shot segmentation methods [3]–[10] generally
adopt a two-branch structure: the conditioner branch for sup-
port data and the segmenter branch for query data, as shown in
Fig. 1(a). In general, these methods usually perform a one-way
transmission that the conditioner branch extracts the features
of support data to guide the segmentation of query data in
the segmenter branch. However, such a one-way transmission
can not fully carry out the information exchange between the
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Fig. 1. Information flow in the few-shot segmentation. (a) shows the data
flow in the previous method, which is one-way supervision from conditioner
to segmenter. Our proposed Symmetrical Supervision Mechanism as shown
in (b). The information can also flow from segmenter to conditioner.

two branches. Furthermore, most methods [8], [9] in few-
shot medical image segmentation fail to consider this global
consistency information lies in support and query data.

To deal with the above limitations, we propose a few-
shot segmentation model with a Symmetrical Supervision
Mechanism (SSM) instead of one-way supervision as shown
in Fig. 1(b). In our model, we also compute the feature of the
query image from the segmenter branch to guide the segmen-
tation of the conditioner for support images. The experiments
show that SSM effectively compensates for the shortcomings
of the insufficient semantic information transmission between
support and query images in the two-branch structures and the
weak supervision.

On the other aspect, the same organ in the support and query
images usually follow a consistent global anatomical structure.
However, the newly proposed Transformer network [11] has
the advantage of modeling long-range global information in
the images. Therefore, we further leverage a light-weighted
Transformer by introducing a novel design Global Feature
Alignment(GFA) to increase the global consistency between



support-query data pairs.
In summary, the main contributions of this work are as

follows.
• We tackle few-shot segmentation from the perspective

of strengthening information exchange of support and
query data. The supervisions are conducted symmetrically
through Symmetrical Supervision Mechanism (SSM).

• We propose a novel Global Feature Alignment (GFA),
which leverages the Transformer blocks to fully utilize
the global anatomical consistency between image slices.

• Experimental results on two challenging datasets (abdom-
inal segmentation dataset CHAOS and cardiac segmenta-
tion dataset MS-CMRSeg) demonstrate that our proposed
method can outperform the state-of-the-art methods.

II. PROBLEM SETTING

Suppose we have two different medical sets Dtrain and
Dtest with non-overlapped category labels Ctrain and Ctest

(e.g. Ctrain = {left kidney, right kidney, liver} and Ctest =
{spleen}), the goal of few-shot image segmentation is to learn
a segmentation Model M on the Dtrain and can directly
evaluate on the Dtest without re-training. In the training
phase, we construct the Dtrain into several episodes, and
each episode contains a set of support images with labels
and a query image, denoted as (S,Q). Besides, we define a
N -way K-shot segmentation task as agreed in other papers.
Specifically, the support set S has K (xi

s, y
i
s) pairs per category

with a total of N different categories from Ctrain. The Q
usually contains one (xq, yq) pair from the same N categories
as the support set. During the testing phase, we construct the
testing episodes from Dtest in the same manner, and evaluate
the generalization performance of the segmentation M trained
on Dtrain.

III. APPROACH

The overall architecture of our proposed method is shown
in Figure 2, which consists of the Segmenter, the Conditioner,
and the Global Feature Alignment (GFA) module. The Seg-
menter and Conditioner are used to extract features from the
query and support data. Between them, we leverage the Sym-
metrical Supervision Mechanism to transmit knowledge from
one to the other. The GFA module aligns high-level features
from the Segmenter and the Conditioner to improve global
consistency between support and query data. Additionally, in
the Segmenter branch, we further adopt a Refinement Loop
(RL) to refine the segmentation results of xq .

A. Conditioner & Segmenter

The traditional U-Net structure [2] is used as the backbone
for both the conditioner and the segmenter, as shown in Fig.
3. In each episode, we concatenate the support image xs with
ygts and then feed it into the conditioner module. The query
image xq is fed into the segmenter module.

To symmetrically transmit the information between the
conditioner and the segmenter, we adopt the SSE module
proposed in [12] as the interaction block. Especially, the SSE

module leverage a channel-wise squeeze and a spatially excite
to suppress the irrelevant background areas in the support
features from different levels, thus the segmenter can pay more
attention to useful foreground information. For the information
flow propagated from conditioner to segmenter (green flow in
Fig. 3), we use the SSE module to re-calibrate the feature of
the segmentation by:

Sigmoid
(
Conv1∗1,1(E

c
i−1)

)
× Es

i−1, (1)

where Ec
i−1 and Es

i−1 stand for intermediate features from
the conditioner and the segmenter, respectively. Conv1∗1,1 is a
convolution operation with 1×1 kernel and 1 output channel.

For the segmenter to conditioner flow (blue flow in Fig. 3),
we compute the corresponding re-calibrated features of the
conditioner by:

Sigmoid
(
Conv1∗1,1(E

s
i−1)

)
× Ec

i−1. (2)

Note that, we perform the feature re-calibration at each middle
level in the encoder and decoder of the U-Net backbones.

B. Symmetrical Supervision Mechanism
The Symmetrical Supervision Mechanism is to use a dual-

directional symmetrical information flow between the condi-
tioner and segmenter to enhance supervision. Existing methods
merely allow the query to learn the information of the labeled
support data from the conditioner branch, thus wasting the
ground truth supervision of the support data, and cannot
fully dig out the relationship between support and query
data. These factors make the supervision of few-shot learning
weaker. Therefore, we introduce the Symmetrical Supervision
Mechanism to enhance supervision. During the training pro-
cess, the intermediate features of each stage in the segmenter
branch are also transferred to the corresponding position of
the conditioner branch through the same interaction block,
guiding the segmentation task of support data. Fig. 1(b) shows
the sketch map of our proposed Symmetrical Supervision
Mechanism. Experiment results show that such mechanism can
enhance the interaction between the upper and lower branch.

C. Global Feature Alignment Module
In general, the same organs in the support images and query

images usually follow a consistent anatomical structure. This
information can be utilized to enhance the ability of query
images to learn from the precious support example. So we
leverage a Global Feature Alignment (GFA) module to in-
crease the similarity of their global features. Transformer [13]–
[15] gets a powerful ability to extract global information. Thus
we use the Transformer to perform the GFA. Before feeding
the features from ES and EC into the transformer blocks,
we first use a patch embedding and a position embedding to
encode the features as in ViT [11],

fq = PE(fenc
q ) + Epos, (3)

fs = PE(fenc
s ) + Epos, (4)

where fenc
q and fenc

s are the features from ES and EC , PE
increases the feature dimension at each spatial location into
768, and Epos is the position embedding.
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Fig. 2. The network architecture of our proposed method. It is mainly composed of three parts: The conditioner and the segmenter extract and analyze the
features of support images and query images, respectively; and the Global Feature Alignment part shortens the distance between the global features from the
two parts mentioned above to keep anatomical similarity between slices. The Symmetrical Supervision Mechanism shows by the blue and red lines.
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Fig. 3. Implementation details of conditioner and segmenter. Features from
support data and query data at different levels are interacted by SSE modules
and then passed through the U-Net architecture.

a) Transformer Block.: The Transformer unit is com-
posed of (1) Multihead Self-Attention (MSA), (2) Multi-Layer
Perception (MLP), and (3) two skip connections, as shown
in Fig. 2. Both transformers for the query and support data
contain L Transformer units sequentially. The final global
features extracted from fs and fq by Transformer blocks are
denoted as f tran

s and f tran
q .

b) Feature Alignment.: We intend to close the semantic
relationship between the two branches using the Feature Align-
ment block so that the communication between the segmenter
and the conditioner is more effective and closer. To increase
the similarity between f tran

s and f tran
q , we perform a feature

alignment between them by increasing the cosine similarity.
The optimization loss function is as follows:

LGFA = 1− Cosine(f tran
s , f tran

q ), (5)

where Cosine(f tran
s , f tran

q ) compute their cosine similarity.

D. Loss Function

Loss for Query Data. We acquire Lcoarse for the query data
by computing the Dice loss between the ycoarseq and ygtq , and
the Lfine between the yfineq and ygtq .
Loss for Support Data. The second loss Lsupp is obtained by
comparing the prediction of support data ys with its ground-
truth ygts . In this process, features from the conditioner are
fused with features from query data in the segmenter to add
supervision symmetrically.
Final Loss. By further combining the Global feature alignment
module, the final loss function for the training model is as
follows:

loss = λ1Lcoarse + λ2Lfine + λ3Lsupp + λ4LGFA, (6)

where λ1, λ2, λ3, λ4 are hyper-parameters and all set to 1 in
this study.

IV. EXPERIMENT

A. Experimental Setup

a) Dataset: We conduct experiments on two publicly
available MRI datasets containing organs with various shapes,
locations, and textures. The first one is from the ISBI 2019
Combined Healthy Abdominal Organ Segmentation Challenge
(CHAOS) [20] with 20 3D T2-SPIR MRI scans. The other
one is from the MICCAI 2019 Multi-sequence Cardiac MRI
Segmentation Challenge (MS-CMRSeg) [21], containing 35
3D cardiac MRI scans. On the CHAOS dataset, we use four
categories for training and testing, i.e., Left kidney, Right
kidney, Spleen, and Liver. While for the MS-CMRSeg dataset,
we choose three categories to evaluate, i.e., Left Ventricle
Blood Pool (LV-BP), Left Ventricle Myocardium (LV-MYO),
and Right Ventricle (RV).



TABLE I
COMPARISONS AGAINST THE STATE OF THE ARTS

Method MS-CMRSeg CHAOS
LV-BP LV-MYO RV Mean L.kildney R.kidney Spleen Liver Mean

SE-Net [8] 69.92 44.71 65.43 59.69 62.11 61.32 51.80 27.43 50.66
CANet [16] 78.99 43.61 61.10 61.07 69.53 77.15 67.05 72.88 71.65
PPNet [17] 67.78 42.61 60.80 57.06 62.13 71.78 66.57 73.12 68.40
PANet [18] 80.20 45.67 66.95 64.27 53.45 38.64 50.90 42.26 46.33

SSL-ALPNet [19] 87.54 60.19 76.08 74.60 73.63 78.39 67.02 73.05 73.02
Ours 86.79 62.31 78.23 75.78 78.46 81.45 73.75 72.90 76.64

R.kidney

OursQuery SE-NET SSL-ALPNetSupport PANet

Liver

L.kidney

Spleen

R.kidney

Fig. 4. Qualitative results of our method compared with other methods
on abdominal MRI dataset CHAOS. We reproduced several representative
methods for segmentation quality comparison. We see (left to right) the
support image, the query image to be predicted with ground truth, and the
segmentation results of the query slice of different models. Our proposed
method achieves desirable results which are close to the ground truth.

Support Query SE-Net PANet SSL-ALPnet Ours

LV-BP

RV

LV-MYO

Fig. 5. Qualitative results of our method compared with other methods on
Cardiac MRI dataset MS-CMRSeg. The proposed method achieves desirable
results which are close to the ground truth.

We employ the mean dice score to compare the model pre-
dictions to the ground truth segmentation, which is commonly
used in medical segmentation scenes.

b) Implementation Details.: Similar to [19], to get a fair
result, we adopt a 5-fold cross-validation method and consider
only 1-shot learning. We resized the MRI slices to a size of
256 × 256. The number of Transformer units is 6, and the
number of headers in multi-head attention is 6.

B. Comparisons with the state of the arts

In this section, we compared our method with five other
different methods, i.e., SE-Net [8], CANet [16], vanilla PANet
[18], PPNet [17] and SSL-ALPNet [19].

a) Quantitative Comparison: From Table I, we can ob-
serve that: 1) Our proposed method consistently outperforms
other methods, especially when compared with baseline SE-
Net. our method improves the performance by 16.9% on
MS-CMRSeg dataset and 25.98% on CHAOS dataset. 2) In
general, our method performs best for the left kidney and
right kidney due to their relatively regular shape and the
slight change along the slice direction, which are 78.46% and
81.45% respectively 3) Our method is neither using prototypes
nor pre-trained ResNet101 on the large-scale ImageNet and
MS-COCO dataset. These results demonstrate that considering
the anatomical global information and symmetrical supervi-
sion plays an important role for accurate few-show medical
image segmentation.

b) Qualitative Comparison: In Figure 4 and Figure 5,
we further show the qualitative results of different methods on
two datasets. We can find that: 1) Our proposed framework
yields satisfying results on organs with various shapes, sizes,
and intensities. 2) The irregular edge that occurred in other
methods is relieved by our proposed Global Feature Alignment
module and Symmetrical Supervision Mechanism through
enhancing information exchange and utilization of supervision
information. 3) In the traditional baseline network SE-Net
(Row.2, Col.3 in Figure 4), the liver is wrongly segmented
as a kidney, which is a typical phenomenon of overfitting that
constantly occurs in few-shot learning caused by extremely
low data regime.

C. Ablation Study

In this section, we conduct an ablation study on the abdom-
inal MRI dataset CHAOS. To evaluate the effectiveness of the
Refinement Loop (RL), Global Feature Alignment (GFA), and
Symmetrical Supervision Mechanism (SSM). From Table II,
we have following findings: 1) Incorporating each component
separately into the baseline model can improve the perfor-
mance. Especially, the GFA and SSM can increase the Dice
Score by 18.37% and 16.47%, respectively. 2) When using two
components, we can see that the GFA & SSM can significantly
boost the Dice Score to 70.47, while the RL & GFA and RL &
SSM only can slightly increase the performance. 3) By jointly
considering these three components, the mean Dice Score is
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Fig. 6. Ablation study visualizations. (Col.1) Support images and the
associated ground-truth masks. (Col.2) Query images and the associated
ground-truth masks. (Col.3) Model results without Symmetrical Supervision
Mechanism (Col.4) Model results without Refinement loop (Col.5) Model
results without Global Feature Alignment.

further increased to 76.64%. The above findings validate the
mutual benefits of the RL, GFA, and SSM.

TABLE II
ABLATION STUDY

RL GFA SSM Liver R.kidney L.kidney Spleen Mean
27.43 61.32 62.11 51.80 50.66

✓ 38.83 50.69 59.09 59.49 52.03
✓ 58.72 59.33 57.24 58.65 58.49

✓ 61.32 59.58 56.94 54.74 58.15
✓ ✓ 69.01 72.14 71.25 69.48 70.47

✓ ✓ 62.57 61.74 62.83 60.58 61.93
✓ ✓ 67.18 65.09 53.76 54.63 60.17
✓ ✓ ✓ 72.90 81.45 78.46 73.75 76.64

Besides, we provide some qualitative results of removing
one component in Figure 6. 1) From Col.4, the absence of
the SSM always leads to incomplete segmentation results,
which suggests that one-direction supervision is insufficient in
medical image analysis. 2) From Col.5, the performance is the
worst when lacking the GFA. These results indicate that Global
Feature Alignment is essential for maintaining the anatomical
structure of the organs. 3) By comparing Col.3 and the last
Col.6, we can find that the refinement loop helps remove some
noisy predictions. These qualitative results further validate the
effectiveness of these three components.

V. CONCLUSION

In this work, we propose a symmetrical supervision few-
shot segmentation network with Transformers for medical
images. Based on the traditional two-branch structure, we suc-
cessfully introduce the Symmetrical Supervision Mechanism
and the Global Feature Alignment module to strengthen the
learning ability of the model and use a refinement loop to
refine the segmentation results further. The proposed method
can outperform many prototype-based methods when properly
interacting the information between the support and query
data.
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